Volumetric muscle loss (VML) frequently results from traumatic incidents and can lead to severe functional disabilities. Hydrogels have been widely employed for VML tissue regeneration, which are unfortunately ineffective because of the lack of intimate contact with injured tissue for structural and mechanical support. Adhesive hydrogels allow for strong tissue connections for wound closure.
View Article and Find Full Text PDFIn this research, we introduced a novel strategy for fabricating cell sheets (CSs) prepared by simply adding a fibrinogen solution to growth medium without using any synthetic polymers or chemical agents. We confirmed that the fibrinogen-based CS could be modified for target tissue regardless of size, shape, and cell types. Also, fibrinogen-based CSs were versatile and could be used to form three-dimensional (3D) CSs such as multi-layered CSs and those mimicking native blood vessels.
View Article and Find Full Text PDFRecently, a number of studies reported that casein was composed of various multifunctional bioactive peptides such as casein phosphopeptide and β-casochemotide-1 that bind calcium ions and induce macrophage chemotaxis, which is crucial for bone homeostasis and bone fracture repair by cytokines secreted in the process. We hypothesized that the effects of the multifunctional biopeptides in casein would contribute to improving bone regeneration. Thus, we designed a tissue engineering platform that consisted of casein and polyvinyl alcohol, which was a physical-crosslinked scaffold (milk-derived protein; MDP), via simple freeze-thaw cycles and performed surface modification using 3,4-dihydroxy-l-phenylalanine (DOPA), a mussel adhesive protein, for immobilizing adhesive proteins and cytokines for recruiting cells in vivo (MDP-DOPA).
View Article and Find Full Text PDFInterstitial fluid (ISF) is a body fluid that fills, surrounds cells and contains various biomarkers, but it has been challenging to extract ISF in a reliable and sufficient amount with high speed. To address the issues, we developed the tilted microneedle ISF collecting system (TMICS) fabricated by 3D printing. In this system, the microneedle (MN) was inserted at 66° to the skin by TMICS so that the MN length could be extended within a safe range of skin penetration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2021
Mesenchymal stem cell (MSC) based therapy holds great potential for treating numerous diseases owing to their capability to heal injured tissue/organs through paracrine factors secretion and immunomodulation. Despite the high hopes, the low viability of transplanted cells in the injured tissues due to the elevated oxidative stress levels remains the largest obstacle in MSC-based cell therapy. To achieve desired therapeutic efficiency, the survival of the transplanted MSCs in the high oxidative stress environment needs to be ensured.
View Article and Find Full Text PDFStudy Design: Retrospective observational study.
Objective: To demonstrate the clinical usefulness of deep learning by identifying previous spinal implants through application of deep learning.
Summary Of Background Data: Deep learning has recently been actively applied to medical images.
Mater Sci Eng C Mater Biol Appl
February 2021
Excessive reactive oxygen species (ROS) and unresolved inflammations are the major causes of impaired wound healing as they overwhelm the cellular antioxidant system and impede the healing process. In this study, we examined the application of Prussian blue (PB) nanozyme as a novel material for cutaneous wound healing through the alleviation of excessive ROS and inflammation modulation. The PB nanoparticles not only exhibited hydrogen peroxide (HO) degradation activity but also showed strong superoxide scavenging ability.
View Article and Find Full Text PDFBio-inspired adhesive hydrogels have been applied to cell and drug delivery systems to address various tissue defects and disorders. However, adhesive hydrogels functionalized with phenolic moieties often lack osteoconductive capacity and mechanical properties for bone regeneration. In this study, we utilized the versatile chemical interactions of phenolic moieties to overcome such limitations in bone tissue engineering efforts.
View Article and Find Full Text PDFWe prepared pocket-type micro-carriers (PMc) with pores larger than 30 μm for use in cell delivery by adding 40 mg pluronic F-127 copolymers (F-127) to biodegradable PLGA dissolved in dichloromethane solution. The controlling the size of the pockets in this way facilitates the adhesion of cells by regulating the size of the pockets according to the cells having various sizes. The size of PMc pores could be controlled within a range of 2 to 30 μm by varying the F-127 content.
View Article and Find Full Text PDFJ Control Release
October 2020
Hypoxia is a hallmark of many malignant solid tumors. The inadequate oxygen concentration in the hypoxic regions of a solid tumor impedes the efficiency of photodynamic therapy (PDT) because the generation of reactive oxygen species during the PDT process is directly dependent on the available oxygen. To enhance the therapeutic efficacy of PDT, we have developed a novel catalytic nanoplatform (nGO-hemin-Ce6) by co-encapsulating hemin as a catalase-mimetic nanozyme and chlorin e6 (Ce6) as a photosensitizer into Pluronic-coated nanographene oxide through simple hydrophobic interaction and π-π stacking.
View Article and Find Full Text PDFThe field of tissue regeneration has seen a paradigm shift after one wave of technological innovation after another, which has notably made significant contributions to basic cellular response control and overall tissue regeneration. One particular area that is seeing rekindled interest after technological innovation is managing cell migration toward defects because successful host cell migration from adjacent tissue can accelerate overall regeneration time in tissue defects that are either large in size or irregular in shape. This chapter surveys significant advances on directed cell migration upon topological cues.
View Article and Find Full Text PDFDeveloping new surgical instruments is challenging. While making surgical instruments could be a good field of application for 3D printers, attempts to do so have proven limited. We designed a new endoscope-assisted spine surgery system, and using a 3D printer, attempted to create a complex surgical instrument and to evaluate the feasibility thereof.
View Article and Find Full Text PDFStem cell transplantation is a promising therapeutic strategy that includes both cell therapy and tissue engineering for the treatment of many regenerative diseases; however, the efficacy and safety of stem cell therapy depend on the cell type used in therapeutic and translational applications. In this study, we validated the hypothesis that human nasal turbinate-derived mesenchymal stem cells (hTMSCs) are a potential therapeutic source of adult stem cells for clinical use in bone tissue engineering using three-dimensional (3D) cell-printing technology. hTMSCs were cultured and evaluated for clinical use according to their cell growth, cell size, and preclinical safety and were then incorporated into a multicompositional 3D bioprinting system and investigated for bone tissue regeneration in vitro and in vivo.
View Article and Find Full Text PDFAlthough there are numerous medical applications to recover damaged skin tissue, scarless wound healing is being extensively investigated to provide a better therapeutic outcome. The exogenous delivery of therapeutic growth factors (GFs) is one of the engineering strategies for skin regeneration. This study presents an exogenous GF delivery platform developed using coacervates (Coa), a tertiary complex of poly(ethylene argininyl aspartate diglyceride) (PEAD) polycation, heparin, and cargo GFs (i.
View Article and Find Full Text PDFPlant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L-lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose-derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages.
View Article and Find Full Text PDFBackground: In elbow fracture-dislocation, partial excision of the comminuted radial head fracture that is not amenable to fixation remains controversial considering the accompanying symptoms. This study was undertaken to evaluate the results of radial head partial excision when the comminuted radial head fracture involved <50% of the articular surface in all-arthroscopic repair of elbow fracture-dislocation.
Methods: Patients were divided into two groups based on the condition of the radial head fracture.
An innovative technique combining capillary force lithography and phase separation method in one step is applied to fabricate artificial nerve guidance conduit (NGC) for peripheral nerve regeneration. Biodegradable porous, patterned NGC (PP-NGC) using poly(lactic-co-glycolic acid) is fabricated. It has micro-grooves and microporosity on the inner surface to promote axonal outgrowth and to enhance permeability for nutrient exchange.
View Article and Find Full Text PDFIf only allowed to proceed naturally, the bone-healing process can take several weeks, months, or even years depending on the injury size. In terms of bone-healing speed, many studies have been conducted investigating the deliverance of various growth factors of implantable biomaterials to shorten the time for bone regeneration. However, there may be side effects such as nerve pain, infection, or ectopic bone formation.
View Article and Find Full Text PDFBackground: The extracellular matrix (ECM) can directly or indirectly influence on regulation of cell functions such as cell adhesion, migration, proliferation and differentiation. The cell derived ECM (CD-ECM) is a useful in vitro model for studying the comprehensive functions of CD-ECM because it maintains a native-like structure and composition. In this study, the CD-ECM is obtained and a test is carried out to determine the effectiveness of several combinations of decellularized methods.
View Article and Find Full Text PDFDespite possessing substantial regenerative capacity, skeletal muscle can suffer from loss of function due to catastrophic traumatic injury or degenerative disease. In such cases, engineered tissue grafts hold the potential to restore function and improve patient quality of life. Requirements for successful integration of engineered tissue grafts with the host musculature include cell alignment that mimics host tissue architecture and directional functionality, as well as vascularization to ensure tissue survival.
View Article and Find Full Text PDFThe skeletal muscle consists of highly aligned dense cables of collagen fibers with nanometer feature size to support muscle fibers. The skeletal myocyte can be greatly affected to differentiate by their surrounding topographical structure. To improve myogenic differentiation, we fabricated cell culture platform that sphingosine-1-phosphate (S1P) which regulated myocyte behavior is immobilized on a biomimetic nanopatterned polyurethaneacrylate (PUA) substrate using 3,4-dihydroxyphenylalanine (L-DOPA) for providing topographical and biological cues synergistically.
View Article and Find Full Text PDFClassical bone tissue engineering involves the use of culture-expanded cells and scaffolds to produce tissue constructs for transplantation. Despite promising results, clinical adoption of these constructs has been limited due to various drawbacks, including extensive cell expansion steps, low cell survival rate upon transplantation, and the possibility of immuno-rejection. To bypass the ex vivo cell culture and transplantation process, the regenerative capacity of the host is exploited by mobilizing endogenous stem cells to the site of injury.
View Article and Find Full Text PDFHuman dental pulp cells have been known to have the stem cell features such as self-renewal and multipotency. These cells are differentiated into hard tissue by addition of proper cytokines and biomaterials. Hydroxyapatite-tricalcium phosphates (HA-TCPs) are essential components of hard tissue and generally used as a biocompatible material in tissue engineering of bone.
View Article and Find Full Text PDFThe development of functional scaffolds with improved osteogenic potential is important for successful bone formation and mineralization in bone tissue engineering. In this study, we developed a functional electrospun silk fibroin (SF) nanofibrous scaffold functionalized with two-stage hydroxyapatite (HAp) particles, using mussel adhesive-inspired polydopamine (PDA) chemistry. HAp particles were first incorporated into SF scaffolds during the electrospinning process, and then immobilized onto the electrospun SF nanofibrous scaffolds containing HAp via PDA-mediated adhesive chemistry.
View Article and Find Full Text PDFWe present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm.
View Article and Find Full Text PDF