Publications by authors named "Hee-Sang Shim"

The purpose of this study was to investigate the composition of oxide films formed on SA106 Gr.B carbon steel in nitrite solutions at 35 °C for 1000 h. The product of the reduction of nitrite during the corrosion inhibition process was also examined.

View Article and Find Full Text PDF

The objective of this study was to investigate the behavior of zinc incorporation into newly forming fuel deposits and pre-formed deposits in a simulated pressurized water reactor coolant including 1000 ppm of boron and 2 ppm of lithium at 328 °C. Zinc was incorporated into fuel deposits that were being newly nucleated and grown on nuclear fuel cladding tubes in a zinc-containing coolant. The zinc incorporation resulted in a decrease in the lattice constant of the deposits, which was attributed to the decrease in larger iron content and the corresponding incorporation of smaller zinc in the deposits.

View Article and Find Full Text PDF

One-dimensional heterostructured TiO2 nanowires were successfully fabricated by an electrospinning technique and modified by hydrolysis. We investigated their structure, morphology, chemical composition, and optical properties by using the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy. In the case of the photovoltaic performance, the short-circuit current density and cell efficiency of the DSSCs employing single TiO2 nanowires and heterostructured TiO2 nanowires improve from 6.

View Article and Find Full Text PDF

The influence of Na on Cu(In,Ga)Se2 (CIGS) solar cells was investigated. A gradient profile of the Na in the CIGS absorber layer can induce an electric field modulation and significantly strengthen the back surface field effect. This field modulation originates from a grain growth model introduced by a combination of alloy-hardening and pair-annihilation probabilities, wherein the Cu supply and Na diffusion together screen the driving force of the grain boundary motion (GBM) by alloy hardening, which indicates a specific GBM pinning by Cu and Na.

View Article and Find Full Text PDF

Here, we report Si pillar and well arrays as tailored electrode materials for advanced Li ion storage devices. The well-ordered and periodic morphologies were formed on a Si electrode thin film via laser interference lithography followed by a dry etch process. Two different patterns of negatively or positively carved Si electrodes exhibited highly improved cycle performance as a consequence of the enlarged surface area and the nanoscale pattern effects.

View Article and Find Full Text PDF

We prepared a composite electrode structure consisting of copper nanofiber-networked cobalt oxide (CuNFs@CoOx). The copper nanofibers (CuNFs) were fabricated on a substrate with formation of a network structure, which may have potential for improving electron percolation and retarding film deformation during the discharging/charging process over the electroactive cobalt oxide. Compared to bare CoOxthin-film (CoOxTF) electrodes, the CuNFs@CoOxelectrodes exhibited a significant enhancement of rate performance by at least six-fold at an input current density of 3C-rate.

View Article and Find Full Text PDF

We have one-pot fabricated Si-based nanocomposite electrodes containing Ag nano-dots for thin-film Li rechargeable batteries by a co-sputtering method. The structural and electrochemical properties of the Si/Ag nanocomposite electrodes are investigated via transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and cycler. The TEM and XRD results show that crystalline Ag nano-dots (approximately 5-9 in size) are well-dispersed within an amorpohous Si matrix.

View Article and Find Full Text PDF

Long ultrathin Cd(OH)(2) nanowires have been selectively grown on silica colloids in a basic aqueous condition. The Cd(OH)(2) nanowires could be detached from the surface of the silica colloids by simply applying ultrasonication and then transformed into isolated CdSe nanocrystal chains. When the transformation into CdSe was conducted without detaching the Cd(OH)(2) nanowires, nanoporous CdSe shells composed of wire-like nanocrystal chains were produced.

View Article and Find Full Text PDF

We report here a simple method of fabricating multi-layered architectures of cross-aligned inorganic nanowires via sequential electrospinning method equipped with a newly devised collector that is able to prepare aligned inorganic nanowires. The multi-layers of aligned TiO2 nanowires can be deposited in a proportional increment of weight with collecting time and reveal a large reduction of electrical resistance by at least 30% compared to a randomly collected TiO2 nanowire structure. The solar cell performance of the cross-aligned TiO2 nanowire layers composited with a conjugated polymer of poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene] (MEH-PPV) is significantly enhanced by 70% or greater in the organic-inorganic hybrid photovoltaic devices than that fabricated with the randomly-collected TiO2 nanowire photoanode.

View Article and Find Full Text PDF

We have synthesized supercapacitor electrodes fashioned of NiO(x)/multiwalled carbon nanotubes (MWNTs), in which the controlled NiO(x) nanoparticles were prepared via a simple colloidal method and supported on the MWNTs. The sizes of the NiO(x) nanoparticles on MWNTs were systematically varied from 4 to 14 nm at a fixed metal loading of 20 wt% by changing sintering temperature in a controlled manner. The maximum specific capacitance of the NiO(x)/MWNTs was measured to be ca.

View Article and Find Full Text PDF

Patterned arrays of Fe oxide nanoparticles were transferred via contact printing method on a substrate surface using carbon nanotubes embedded in anodic aluminum oxide (CNTs/AAO) as a stamp, in which vertically aligned CNTs in hexagonally patterned array was first fabricated by chemical vapor deposition into the AAO, followed by a partial chemical etching to expose the CNTs from the AAO. Fe precursor inked CNTs stamp was contact-printed on a Pt-coated Si substrate, and after heat treatment at 200 degrees C, patterned array of Fe oxide nanoparticles with ca. 80 nm of diameter and ca.

View Article and Find Full Text PDF

We report electrochromic and electrochemical properties of a WO3-Ta2O5 nanocomposite electrode that was fabricated from co-sputtering. Transmission electron microscopy (TEM) images of the WO3-Ta20 nanocomposite electrode revealed that morphology of the WO3 film was changed by incorporation of Ta2O5 nanoparticles, and their chemical states were confirmed to be W6+ and Ta5+ oxides from X-ray photoelectron spectroscopy (XPS). The introduction of Ta2O5 to the WO3 film played a role in alleviating surface roughness increase during continuous potential cycling; whereas the surface roughness of the WO3 film was increased from ca.

View Article and Find Full Text PDF