Publications by authors named "Hee Youn Shim"

How beta-amyloid accumulation influences brain atrophy in Alzheimer's disease remains contentious with conflicting findings. We aimed to elucidate the correlations of regional longitudinal atrophy with cross-sectional regional and global amyloid in individuals with mild cognitive impairment and no cognitive impairment. We hypothesized that greater cortical thinning over time correlated with greater amyloid deposition, particularly within Alzheimer's disease characteristic regions in mild cognitive impairment, and weaker or no correlations in those with no cognitive impairment.

View Article and Find Full Text PDF

Optimal levels of intrinsic Blood-Oxygenation-Level-Dependent (BOLD) signal variability (variability hereafter) are important for normative brain functioning. However, it remains largely unknown how network-specific and frequency-specific variability changes along the Alzheimer's disease (AD) spectrum and relates to cognitive decline. We hypothesized that cognitive impairment was related to distinct BOLD variability alterations in two brain networks with reciprocal relationship, i.

View Article and Find Full Text PDF

Cerebral microinfarcts (CMIs), a novel cerebrovascular marker, are prevalent in Alzheimer's disease (AD) and associated with cognitive impairment. Nonetheless, the underlying mechanism of how CMIs influence cognition remains uncertain. We hypothesized that cortical-CMIs disrupted structural connectivity in the higher-order cognitive networks, leading to cognitive impairment.

View Article and Find Full Text PDF

Objective: Late-life depression involves the disconnection of white matter tracts that regulate mood. A pathogenic link between poor tract integrity and depressive symptoms is believed to be white matter lesions (WML), however the mechanisms linking tract integrity, WML, and depression remains unexplored. The authors sought to identify whether the association between reduced tract integrity and depressive symptoms is mediated by WML in patients with Alzheimer disease (AD), and whether individual characteristics moderate this effect.

View Article and Find Full Text PDF

Instead of assuming a constant relationship between brain abnormalities and memory impairment, we aimed to examine the stage-dependent contributions of multimodal brain structural and functional deterioration to memory impairment in the Alzheimer's disease (AD) continuum. We assessed grey matter volume, white matter (WM) microstructural measures (free-water (FW) and FW-corrected fractional anisotropy), and functional connectivity of the default mode network (DMN) in 54 amnestic mild cognitive impairment (aMCI) and 46 AD. We employed a novel sparse varying coefficient model to investigate how the associations between abnormal brain measures and memory impairment varied throughout disease continuum.

View Article and Find Full Text PDF

Alterations in parietal and temporal white matter microstructure derived from diffusion tensor imaging occur in preclinical and clinical Alzheimer's disease. Amyloid beta (Aβ) deposition and such white matter alterations are two pathological hallmarks of Alzheimer's disease. However, the relationship between these pathologies is not yet understood, partly since conventional diffusion MRI methods cannot distinguish between cellular and extracellular processes.

View Article and Find Full Text PDF

Background: Patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) show functional and structural connectivity alterations in the default mode network (DMN) while cerebrovascular disease (CeVD) shows functional and structural connectivity changes in the executive control network (ECN). Such disruptions are associated with memory and executive function impairment, respectively. Concurrent AD and CeVD pathology is associated with a higher rate of cognitive decline and differential neurodegenerative patterns.

View Article and Find Full Text PDF

The mechanism by which host factors contribute to hepatitis B virus (HBV) capsid formation during the viral life cycle remains unclear. This study analyzed the interaction between heat shock protein 90 (Hsp90), a host factor, and the HBV core protein. Hsp90 was found to bind to HBV core protein dimers, which was then encapsidated into the HBV capsid.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatitis B virus (HBV) replication involves both viral and host factors, including identified proteins and potential unidentified host factors affecting encapsidation.
  • Researchers discovered a new host factor, nucleophosmin (B23), that interacts specifically with the HBV core protein (Cpl49).
  • Advanced techniques like NHS-activated sepharose resin, MALDI-TOF MS, and BIAcore analysis were used to determine that specific residues in B23 (259-294) are crucial for this interaction.
View Article and Find Full Text PDF