Publications by authors named "Hee Taek Yi"

Article Synopsis
  • - The MnBiTe-(BiTe) superlattice is a promising material that integrates topology and magnetism with low structural disorder, enabling effective study of magnetic properties.
  • - Researchers found that ferromagnetic (FM) and antiferromagnetic (AFM) orders in this system can be controlled by adjusting either the Mn-Mn distance or the BiTe/MnBiTe ratio.
  • - Their findings reveal that AFM order relies solely on the Mn-Mn distance, while FM order depends only on the BiTe/MnBiTe ratio, offering pathways to manipulate magnetic orders in similar materials.
View Article and Find Full Text PDF

Highly crystalline and easily feasible topological insulator-superconductor (TI-SC) heterostructures are crucial for the development of practical topological qubit devices. The optimal superconducting layer for TI-SC heterostructures should be highly resilient against external contamination and structurally compatible with TIs. In this study, we provide a solution to this challenge by showcasing the growth of a highly crystalline TI-SC heterostructure using refractory TiN (111) as the superconducting layer.

View Article and Find Full Text PDF

Magnetic topological insulators are a fertile platform for studying the interplay between magnetism and topology. The unique electronic band structure can induce exotic transport and optical properties. However, a comprehensive optical study at both near-infrared and terahertz frequencies has been lacking.

View Article and Find Full Text PDF

A key aspect of how the brain learns and enables decision-making processes is through synaptic interactions. Electrical transmission and communication in a network of synapses are modulated by extracellular fields generated by ionic chemical gradients. Emulating such spatial interactions in synthetic networks can be of potential use for neuromorphic learning and the hardware implementation of artificial intelligence.

View Article and Find Full Text PDF

The quantum anomalous Hall effect (QAHE) was discovered a decade ago but is still not utilized beyond a handful of research groups, due to numerous limitations such as extremely low temperature, electric-field-effect gating requirement, small sample sizes, and environmental aging effect. Here, we present a robust platform that provides effective solutions to these problems. Specifically, on this platform, we observe QAH signatures at record-high temperatures, with a Hall conductance of 1.

View Article and Find Full Text PDF

Epitaxial Fe(Te,Se) thin films have been grown on various substrates but never been grown on magnetic layers. Here we report the epitaxial growth of fourfold Fe(Te,Se) film on a sixfold antiferromagnetic insulator, MnTe. The Fe(Te,Se)/MnTe heterostructure shows a clear superconducting transition at around 11 K, and the critical magnetic field measurement suggests the origin of the superconductivity to be bulk-like.

View Article and Find Full Text PDF

It is challenging to grow an epitaxial 4-fold compound superconductor (SC) on a 6-fold topological insulator (TI) platform due to the stringent lattice-matching requirement. Here, we demonstrate that Fe(Te,Se) can grow epitaxially on a TI (BiTe) layer due to accidental, uniaxial lattice match, which is dubbed as "hybrid symmetry epitaxy". This new growth mode is critical to stabilizing robust superconductivity with as high as 13 K.

View Article and Find Full Text PDF

Controlling magnetic order in magnetic topological insulators (MTIs) is a key to developing spintronic applications with MTIs and is commonly achieved by changing the magnetic doping concentration, which inevitably affects the spin-orbit coupling strength and the topological properties. Here, we demonstrate tunable magnetic properties in topological heterostructures over a wide range, from a ferromagnetic phase with a Curie temperature of around 100 K all the way to a paramagnetic phase, while keeping the overall chemical composition the same, by controlling the thickness of nonmagnetic spacer layers between two atomically thin magnetic layers. This work showcases that spacer-layer control is a powerful tool to manipulate magneto-topological functionalities in MTI heterostructures.

View Article and Find Full Text PDF

Utilizing the intrinsic mobility-strain relationship in semiconductors is critical for enabling strain engineering applications in high-performance flexible electronics. Here, measurements of Hall effect and Raman spectra of an organic semiconductor as a function of uniaxial mechanical strain are reported. This study reveals a very strong, anisotropic, and reversible modulation of the intrinsic (trap-free) charge carrier mobility of single-crystal rubrene transistors with strain, showing that the effective mobility of organic circuits can be enhanced by up to 100% with only 1% of compressive strain.

View Article and Find Full Text PDF

We present a high resolution method for measuring magnetostriction in millisecond pulsed magnetic fields at cryogenic temperatures with a sensitivity of . The sample is bonded to a thin piezoelectric plate such that when the sample's length changes, it strains the piezoelectric and induces a voltage change. This method is more sensitive than a fiber-Bragg grating method.

View Article and Find Full Text PDF

Hall effect measurements in CH3 NH3 PbBr3 single crystals reveal that the charge-carrier mobility follows an inverse-temperature power-law dependence, μ ∝ T(-) (γ) , with the power exponent γ = 1.4 ± 0.1 in the cubic phase, indicating an acoustic-phonon-dominated carrier scattering, and γ = 0.

View Article and Find Full Text PDF

Multiferroics permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics.

View Article and Find Full Text PDF

Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. Here we report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO₃.

View Article and Find Full Text PDF

We have studied the magnetic field dependence of far-infrared active magnetic modes in a single ferroelectric domain BiFeO3 crystal at low temperature. The modes soften close to the critical field of 18.8 T along the [001] (pseudocubic) axis, where the cycloidal structure changes to the homogeneous canted antiferromagnetic state and a new strong mode with linear field dependence appears that persists at least up to 31 T.

View Article and Find Full Text PDF

Organic semiconductors might enable new applications in low-cost, light-weight, flexible electronics. To build a solid foundation for these technologies, more fundamental studies of electro-mechanical properties of various types of organic semiconductors are necessary. Here we perform basic studies of charge transport in highly crystalline solution-processed organic semiconductors as a function of applied mechanical strain.

View Article and Find Full Text PDF