Stroke in young patients requires thorough evaluation as they often lack risk factors. Antiphospholipid syndrome can cause arterial thrombosis and pregnancy loss; hence, differential diagnoses should include seronegative antiphospholipid syndrome. We report a case of recurrent ischemic stroke caused by recurrent dissection in a patient with a history of pregnancy loss.
View Article and Find Full Text PDFOxidative stress can induce covalent disulfide bond formation between protein-protein thiol groups and generate hydroxyl free radicals that damage DNA. HMGB1 is a DNA chaperone and damage-associated molecular pattern molecule. As a redox-sensitive protein, HMGB1 contains three cysteine residues: Cys23, Cys45, and Cys106.
View Article and Find Full Text PDFThe high mobility group box 1 (HMGB1) is a well-known late mediator of sepsis, secreted by multiple stimuli, involving pathways, such as the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways, and reactive oxygen species (ROS) under inflammation. Sulfatide, in contrast, is a sphingolipid commonly found in myelin sheets with a disputed immunological role. We sought to determine the immunological characteristics of sulfatide in the periphery by analyzing the secretion of HMGB1 triggered by lipopolysaccharide (LPS) stimulation in Raw 264.
View Article and Find Full Text PDFMost extracellular proteins are secreted via the classical endoplasmic reticulum (ER)/Golgi-dependent secretion pathway; however, some proteins, including a few danger-associated molecular patterns (DAMPs), are secreted via non-classical ER/Golgi-independent secretion pathways. The evolutionarily conserved high mobility group box1 (HMGB1) is a ubiquitous nuclear protein that can be released by almost all cell types. HMGB1 lacks signal peptide and utilizes diverse non-canonical secretion mechanisms for its extracellular export.
View Article and Find Full Text PDFHigh mobility group box-1 (HMGB1) is involved in various diseases and is associated with the resistance of many types of human cancers to chemotherapy; however, its role in cancer metastasis remains unexplored. This study examined the HMGB1 status of both highly and poorly metastatic cancer cells in response to genotoxic stress. The weakly and highly metastatic mouse melanoma cell lines (B16 .
View Article and Find Full Text PDFThe nuclear protein HMGB1 (high mobility group box 1) is secreted by monocytes-macrophages in response to inflammatory stimuli and serves as a danger-associated molecular pattern. Acetylation and phosphorylation of HMGB1 are implicated in the regulation of its nucleocytoplasmic translocation for secretion, although inflammatory stimuli are known to induce HO production. Here we show that HO-induced oxidation of HMGB1, which results in the formation of an intramolecular disulfide bond between Cys and Cys, is necessary and sufficient for its nucleocytoplasmic translocation and secretion.
View Article and Find Full Text PDFIn TNF-related apoptosis-inducing ligand (TRAIL)-resistant glioma cells, co-treatment with nontoxic doses of sodium butyrate and TRAIL resulted in a marked increase of TRAIL-induced apoptosis. This combined treatment was also cytotoxic to glioma cells overexpressing Bcl-2 or Bcl-xL, but not to normal human astrocytes, thus offering an attractive strategy for safely treating resistant gliomas. Cotreatment with sodium butyrate facilitated completion of proteolytic processing of procaspase-3 that was partially blocked by treatment with TRAIL alone.
View Article and Find Full Text PDF