Publications by authors named "Hee S Bae"

Aim: This study aims to develop a cardiac arrest prediction model using deep learning (CAPD) algorithm and to validate the developed algorithm by evaluating the change in out-of-hospital cardiac arrest patient prognosis according to the increase in scene time interval (STI).

Methods: We conducted a retrospective cohort study using smart advanced life support trial data collected by the National Emergency Center from January 2016 to December 2019. The smart advanced life support data were randomly partitioned into derivation and validation datasets.

View Article and Find Full Text PDF

Huntington's disease (HD) is a severe inherited neurological disorder caused by a CAG repeat expansion in the huntingtin gene (HTT), leading to the accumulation of mutant huntingtin with polyglutamine repeats. Despite its severity, there is no cure for this debilitating disease. HTT lowering strategies, including antisense oligonucleotides (ASO) showed promising results very recently.

View Article and Find Full Text PDF

Thyroid hormone (TH) has long been believed to play a minor role in male reproduction. However, evidences from experimental model of thyrotoxicosis or hypothyroidism suggests its role in spermatogenesis. Cellular action of TH requires membrane transport via specific transporters such as monocarboxylate transporter 8 (MCT8).

View Article and Find Full Text PDF

The CRISPR/Cas9 (SpCas9) system is now widely utilized to generate genome engineered mice; however, some studies raised issues related to off-target mutations with this system. Herein, we utilized the Cas9 (CjCas9) system to generate knockout mice. We designed sgRNAs targeting mouse or and microinjected into zygotes along with CjCas9 mRNA.

View Article and Find Full Text PDF

Charcot-Marie-Tooth 1A (CMT1A) is the most common inherited neuropathy without a known therapy, which is caused by a 1.4 Mb duplication on human chromosome 17, which includes the gene encoding the peripheral myelin protein of 22 kDa (PMP22). Overexpressed PMP22 protein from its gene duplication is thought to cause demyelination and subsequently axonal degeneration in the peripheral nervous system (PNS).

View Article and Find Full Text PDF

The CRISPR/Cas9 system is widely applied in genome engineering due to its simplicity and versatility. Although this has revolutionized genome-editing technology, knockin animal generation via homology directed repair (HDR) is not as efficient as nonhomologous end-joining DNA-repair-dependent knockout. Although its double-strand break activity may vary, Cas9 derived from Streptococcus pyogenens allows robust design of single-guide RNAs (sgRNAs) within the target sequence; However, prescreening for different sgRNA activities delays the process of transgenic animal generation.

View Article and Find Full Text PDF

Overactive bladder (OAB), which is characterized by the sudden and uncomfortable need to urinate with or without urinary leakage, is a challenging urological condition. The insufficient efficacy of current pharmacotherapies that uses antimuscarinic agents has increased the demand for novel long-term/stable therapeutic strategies. Here, we report the superior therapeutic efficacy of using mesenchymal stem cells (MSCs) for the treatment of OAB and a novel therapeutic mechanism that activates endogenous Oct4(+) primitive stem cells.

View Article and Find Full Text PDF

The interleukin-4 (IL-4) signaling cascade has been identified as a potentially important pathway in the development of allergies. The principal objective of this study was to produce novel transgenic (Tg) mice harboring the luciferase gene under the control of the human IL-4 promoter and the enhancer of IL-4 (CNS-1), in an effort to evaluate three types of allergens including a respiratory sensitizer, vaccine additives, and crude extracts of natural allergens in vivo. A new lineage of Tg mice was generated by the microinjection of pIL-4/Luc/CNS-1 constructs into a fertilized mice egg.

View Article and Find Full Text PDF

Two new strains, Pseudomonas sp. TCP114 degrading 2,4,6-trichlorophenol (TCP) and Arthrobacter sp. CPR706 degrading 4-chlorophenol (4-CP), were isolated through a selective enrichment procedure.

View Article and Find Full Text PDF