The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring.
View Article and Find Full Text PDFWe have previously demonstrated that protein restriction throughout gestation and lactation reduces liver triglyceride content in adult rat offspring. However, the mechanisms mediating the decrease in liver triglyceride content are not understood. The aim of the current study was to use a new group of pregnant animals and their offspring and determine the contribution of increased triglyceride utilization via the hepatic fatty-acid oxidation and triglyceride secretory pathways to the reduction in liver triglyceride content.
View Article and Find Full Text PDFSince the introduction of the thrifty phenotype hypothesis, the potential traits of thrift have been described in increasingly broad terms but biochemical and behavioral evidence of thrift has not been well demonstrated. The objective of our studies was to use a rodent model to identify features of thrift programmed by early life protein restriction. Robust programming of thrifty features requires a thrifty nutritional environment during the entire window of developmental plasticity.
View Article and Find Full Text PDF