Publications by authors named "Hee Jin Chun"

Cultured meat (CM) is an alternative protein food and is produced by cultivating muscle satellite (stem) cells (MSCs) derived from livestock animals (bovine, chickens, and porcine) through myogenesis leading to generate muscle mass. Myostatin (MSTN) is well well-known negative regulator of myogenesis, and in the present study, screening of natural compounds was performed to identify MSTN inhibitors. Interestingly, quercetin was found to inhibit MSTN (binding energy -7.

View Article and Find Full Text PDF

Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity.

View Article and Find Full Text PDF

The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes.

View Article and Find Full Text PDF

Skeletal muscle (SM) plays a vital role in energy and glucose metabolism by regulating insulin sensitivity, glucose uptake, and blood glucose homeostasis. Impaired SM metabolism is strongly linked to several diseases, particularly type 2 diabetes (T2D). Insulin resistance in SM may result from the impaired activities of insulin receptor tyrosine kinase, insulin receptor substrate 1, phosphoinositide 3-kinase, and AKT pathways.

View Article and Find Full Text PDF

Myostatin is a widely recognized inhibitory factor of skeletal muscle growth and significantly influences muscle development and metabolism. In mice, myostatin inhibition improves insulin sensitivity, increases glucose uptake by skeletal muscle, and reduces body fat. Furthermore, Mss51 is downregulated in response to myostatin inhibition, and its deletion appears to improve the metabolic state of skeletal muscle and reduce adipose tissue, which makes Mss51 a potential target for the treatment of obesity and type 2 diabetes.

View Article and Find Full Text PDF

Cultured meat is a potential sustainable food generated by the myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones.

View Article and Find Full Text PDF

Immunoglobulin-like cell adhesion molecule (IgLON4) is a glycosylphosphatidylinositol-anchored membrane protein that has been associated with neuronal growth and connectivity, and its deficiency has been linked to increased fat mass and low muscle mass. Adequate information on IgLON4 is lacking, especially in the context of skeletal muscle. In this study, we report that IgLON4 is profusely expressed in mouse muscles and is intensely localized on the cell membrane.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a growing global public health issue, and dipeptidyl peptidase-4 (DPP-4) is a potential therapeutic target in T2DM. Several synthetic anti-DPP-4 medications can be used to treat T2DM. However, because of adverse effects, there is an unmet demand for the development of safe and effective medications.

View Article and Find Full Text PDF

Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN.

View Article and Find Full Text PDF

Myostatin (MSTN), a negative regulator of muscle mass, is reported to be increased in conditions linked with muscle atrophy, sarcopenia, and other muscle-related diseases. Most pharmacologic approaches that treat muscle disorders are ineffective, emphasizing the emergence of MSTN inhibition. In this study, we used computational screening to uncover natural small bioactive inhibitors from the Traditional Chinese Medicine database (~38,000 compounds) for the MSTN protein.

View Article and Find Full Text PDF

Cultured meat production is an evolving method of producing animal meat using tissue engineering techniques. Cells, chemical factors, and suitable biomaterials that serve as scaffolds are all essential for the cultivation of muscle tissue. Scaffolding is essential for the development of organized meat products resembling steaks because it provides the mechanical stability needed by cells to attach, differentiate, and mature.

View Article and Find Full Text PDF

IgLON5 is a cell adhesion protein belonging to the immunoglobulin superfamily and has important cellular functions. The objective of this study was to determine the role played by IgLON5 during myogenesis. We found IgLON5 expression progressively increased in C2C12 myoblasts during transition from the adhesion to differentiation stage.

View Article and Find Full Text PDF

is the causative agent of many diseases, most notably pneumonia. Most of the currently used vaccines to protect against this pathogen employ pneumococcal capsular polysaccharides (CPSs) as antigens, but purifying CPS of sufficient quality has been challenging. A purification process for CPS comprising conventional methods such as ultrafiltration, CTAB precipitation, and chromatography was previously established; however, this method resulted in high cell wall polysaccharide (CWPS) contamination, especially for serotype 5.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm0bmrf28j6k1982gojinblc6fh4g52gl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once