Publications by authors named "Hee Beom Park"

Concrete bridge structures require reinforcement, as their performance deteriorates over time. In this regard, this study evaluated the effect of additional prestressing using fiber-reinforced polymers (FRPs) and strands applied to a demolished, deteriorated bridge. In particular, specimens were prepared for a bridge subjected to non-, near-surface mounted (NSM), and external prestressing (EP) strengthening to evaluate the stiffness and safety of the structure.

View Article and Find Full Text PDF

A prestressed concrete (PSC) structure is subject to prestress losses in the long and short terms, and the structure ages over time. The structure is susceptible to corrosion from exposure to environmental factors such as moisture, chloride, and carbonation, thus causing prestress loss. Therefore, strengthening the structure is needed to address this problem.

View Article and Find Full Text PDF

Composite materials such as glass and carbon fibre composites have become popular and the preferred choice in various applications due to their many advantages such as corrosion resistance, design flexibility, high strength and light weight. Combining materials with different mechanical properties make composites more difficult to evaluate where the damage mechanisms for composites are more complex than traditional materials such as steel. A relatively new non-destructive testing (NDT) method known as the electromechanical impedance (EMI) technique has been studied by various researchers, but the damage detection performance of the method on composite structures still requires more investigations before it can be accepted for field application, especially in aerospace industry due to the high standard of safety.

View Article and Find Full Text PDF

The prestressed near-surface mounted reinforcement (NSMR) using Fiber Reinforced Polymer (FRP) was developed to improve the load bearing capacity of ageing or degraded concrete structures. The NSMR using FRP was the subject of numerous studies of which a mere portion was dedicated to the long-term behavior under fatigue loading. Accordingly, the present study intends to examine the fatigue performance of the NSMR applying the anchoring system developed by Korea Institute of Construction and Building Technology (KICT).

View Article and Find Full Text PDF