Publications by authors named "Hedreen J"

Two aspects of the neuropathology of early Huntington disease (HD) are examined. Neurons of the neostriatum are counted to determine relative loss in striosomes versus matrix at early stages, including for the first time in preclinical cases. An immunohistochemical procedure is described that tentatively distinguishes early HD from HD mimic disorders in postmortem brains.

View Article and Find Full Text PDF

To elucidate the role of Tau isoforms and post-translational modification (PTM) stoichiometry in Alzheimer's disease (AD), we generated a high-resolution quantitative proteomics map of 95 PTMs on multiple isoforms of Tau isolated from postmortem human tissue from 49 AD and 42 control subjects. Although Tau PTM maps reveal heterogeneity across subjects, a subset of PTMs display high occupancy and frequency for AD, suggesting importance in disease. Unsupervised analyses indicate that PTMs occur in an ordered manner, leading to Tau aggregation.

View Article and Find Full Text PDF

Corticobasal degeneration typically progresses gradually over 5-7 years from onset till death. Fulminant corticobasal degeneration cases with a rapidly progressive course were rarely reported (RP-CBD). This study aimed to investigate their neuropathological characteristics.

View Article and Find Full Text PDF

In the version of this article initially published, the legends for Supplementary Figs. 4-8 and 10-14 contained errors. The Supplementary Figure legends have been corrected in the HTML and PDF versions of the article.

View Article and Find Full Text PDF

Enhancers function as DNA logic gates and may control specialized functions of billions of neurons. Here we show a tailored program of noncoding genome elements active in situ in physiologically distinct dopamine neurons of the human brain. We found 71,022 transcribed noncoding elements, many of which were consistent with active enhancers and with regulatory mechanisms in zebrafish and mouse brains.

View Article and Find Full Text PDF

Postmortem studies on the human brain reside at the core of investigations on neurologic and psychiatric disorders. Ground-breaking advances continue to be made on the pathologic basis of many of these disorders, at molecular, cellular, and neural connectivity levels. In parallel, there is increasing emphasis on improving methods to extract relevant demographic and clinical information about brain donors and, importantly, translate it into measures that can reliably and effectively be incorporated in the design and data analysis of postmortem human investigations.

View Article and Find Full Text PDF

Aims: Previous data suggest heterogeneity in laminar distribution of the pathology in the molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). To study this heterogeneity, we quantified the changes in density across the cortical laminae of neuronal cytoplasmic inclusions, glial inclusions, neuronal intranuclear inclusions, dystrophic neurites, surviving neurones, abnormally enlarged neurones, and vacuoles in regions of the frontal and temporal lobe.

Methods: Changes in density of histological features across cortical gyri were studied in 10 sporadic cases of FTLD-TDP using quantitative methods and polynomial curve fitting.

View Article and Find Full Text PDF

The role of Lewy bodies, Lewy neurites and α-synuclein (αSYN) in the pathophysiology and diagnosis of Parkinson's disease (PD) is unclear. We used postmortem human tissue, a panel of antibodies (Abs) and confocal microscopy to examine the three-dimensional neurochemical anatomy of the nigrostriatal system. Abs were specific to truncated (tαSYN), phosphorylated and full-length αSYN.

View Article and Find Full Text PDF

Parkinson's disease affects 5 million people worldwide, but the molecular mechanisms underlying its pathogenesis are still unclear. Here, we report a genome-wide meta-analysis of gene sets (groups of genes that encode the same biological pathway or process) in 410 samples from patients with symptomatic Parkinson's and subclinical disease and healthy controls. We analyzed 6.

View Article and Find Full Text PDF

Studies suggest that frontotemporal lobar degeneration with transactive response DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP) is heterogeneous with division into four or five subtypes. To determine the degree of heterogeneity and the validity of the subtypes, we studied neuropathological variation within the frontal and temporal lobes of 94 cases of FTLD-TDP using quantitative estimates of density and principal components analysis (PCA). A PCA based on the density of TDP-43 immunoreactive neuronal cytoplasmic inclusions, oligodendroglial inclusions, neuronal intranuclear inclusions, and dystrophic neurites, surviving neurons, enlarged neurons, and vacuolation suggested that cases were not segregated into distinct subtypes.

View Article and Find Full Text PDF

Familial, early onset, generalized torsion dystonia is the most common and severe primary dystonia. The majority of cases are caused by a 3-bp deletion (GAG) in the coding region of the DYT1 (TOR1A) gene. The cellular and regional distribution of torsinA protein, which is restricted to neuronal cells and present in all brain regions by the age of 2 months has been described recently in human developing brain.

View Article and Find Full Text PDF

Background: Human immunodeficiency virus (HIV) leucoencephalopathy (HIVL) is an uncommon and rapidly progressive form of AIDS dementia complex (ADC) that has remained poorly understood. Tumour necrosis factor alpha (TNFalpha), which has been implicated in the pathogenesis of ADC, is predominantly localised in macrophages in the HIV infected brain, although in vitro studies indicate that neurones can express this cytokine.

Objective: To examine the clinical/neuroradiological features of HIVL and the expression of TNFalpha in HIVL.

View Article and Find Full Text PDF

Familial, early onset, generalized torsion dystonia is the most common and severe primary dystonia. The majority of cases are caused by a 3-bp deletion (GAG) in the coding region of the DYT1 (TOR1A) gene. The cellular and regional distribution of torsinA protein and its message has been described previously in several regions of normal adult human and rodent brain.

View Article and Find Full Text PDF

Hippocampal sclerosis dementia (HSD) is a disease of unknown etiology and pathogenesis. To determine whether HSD cases could be reclassified as variants of frontotemporal dementia (FTD), a heterogeneous group of disorders, 18 brain autopsy cases previously diagnosed as HSD were re-evaluated. In 11 cases, ubiquitinated neuronal inclusions, similar to those of motor neuron disease inclusion dementia (MNDID), were found.

View Article and Find Full Text PDF

Recent in vitro studies suggest that the alpha chemokine stromal-derived factor-1alpha (SDF-1alpha) and its receptor CXCR-4 may contribute to neuronal apoptosis in HIV infection of the brain. The cellular and regional expression of this chemokine and its relationship to the AIDS dementia complex (ADC), however, have remained undetermined. Using immunohistochemistry and semiquantitative RT-PCR, we examined the expression of SDF-1alpha in the frontal cortex (FC), the adjacent deep white matter (DWM).

View Article and Find Full Text PDF

Familial, early onset, generalized torsion dystonia is the most common and severe primary dystonia. Most cases are caused by a 3-bp deletion (GAG) in the coding region of the TOR1A (DYT1) gene, which is widely expressed in human brain and encodes the protein torsinA. This study compares neuropathology and torsinA expression in the normal human brain with that in dystonia cases with and without the GAG deletion.

View Article and Find Full Text PDF

The syndrome of frontotemporal dementia represents a diverse group of diseases presenting with behavioral and cognitive disturbances. The expression of the microtubule-associated protein tau was studied in postmortem samples of frontal cortex of 19 cases (12 Pick's disease A, B, C; 4 dementia lacking distinct histology; 3 motor neuron disease type) by Western blotting with a phosphorylation-independent anti-tau antibody. The presence of tau protein was detected in all cases evaluated, including the 11 brains classified as frontotemporal lobe degeneration (diagnostic categories Pick's disease B, C and dementia lacking distinct histology).

View Article and Find Full Text PDF

The role of NFkappaB activation and its relationship to inflammatory mediators and apoptosis in the HIV-infected brain have remained uncertain. The cellular and regional distribution of NFkappaB, TNF-alpha, and apoptosis was examined in the frontal cortex (FC), deep white matter (DWM) and the basal ganglia (BG) of 17 patients with ADC. Nuclear staining for NFkappaB was localized predominantly to perivascular microglia/macrophages in the BG and DWM and correlated with ADC severity.

View Article and Find Full Text PDF

The regional expression of immune-mediated and neurotoxic events in the human immunodeficiency virus (HIV)-infected brain in relationship to the acquired immunodeficiency syndrome (AIDS) dementia complex (ADC) and brain pathology remains uncertain. The extent of gp41, inducible nitric oxide synthase (iNOS), and HLA-DR expression was examined in the frontal lobe and basal ganglia of 25 patients at varying stages of ADC. The expression of gp41 and iNOS was present predominantly in perivascular cells and most often in the basal ganglia.

View Article and Find Full Text PDF

In contrast to the well-established dopaminergic innervation of the neostriatum, the existence of dopaminergic innervation of the subthalamic nucleus and globus pallidus is controversial. In the present study, tyrosine hydroxylase (TH)-immunoreactive elements were observed by light microscopy after antigen retrieval in the subthalamic nucleus and in the internal and external segments of the globus pallidus in postmortem human brain. Small islands of apparent neostriatal tissue with abundant arborization of fine, TH-immunoreactive axons in the vicinity of calbindin-positive small neurons resembling neostriatal medium spiny neurons were present in the external segment of the globus pallidus.

View Article and Find Full Text PDF

When a tissue volume is sectioned, cells or other objects are cut into segments by the sectioning process. The Abercrombie and empirical methods count object segments in histological sections and then apply a correction formula to convert the segment count to object number. There has been considerable recent controversy over whether these methods should be abandoned (in favor of the disector).

View Article and Find Full Text PDF

Background: In methods with the goal of counting objects in a sectioned tissue volume by examining their profiles or segments in the sections, lost caps, i.e., small object fragments unnoticed or missing at the section surfaces, are an unavoidable issue.

View Article and Find Full Text PDF

We commemorate the one hundredth anniversary of the publication of a pioneering paper on cell counting, by Gaule and Lewin. Their paper describes a new method for counting cells in tissue sections. First they found the mean number of cell profiles per cell by examining 50 selected cells in serial sections.

View Article and Find Full Text PDF

Abnormal CAG expansions in the IT-15 gene are associated with Huntington disease (HD). In the diagnostic setting it is necessary to define the limits of the CAG size ranges on normal and HD-associated chromosomes. Most large analyses that defined the limits of the normal and pathological size ranges employed PCR assays, which included the CAG repeats and a CCG repeat tract that was thought to be invariant.

View Article and Find Full Text PDF