Publications by authors named "Hedok Lee"

Brain waste clearance from the interstitial fluid environment is challenging to measure, which has contributed to controversy regarding the significance of glymphatic transport impairment for neurodegenerative processes. Dynamic contrast enhanced MRI (DCE-MRI) with cerebrospinal fluid administration of Gd-tagged tracers is often used to assess glymphatic system function. We previously quantified glymphatic transport from DCE-MRI data utilizing regularized optimal mass transport (rOMT) analysis, however, information specific to glymphatic clearance was not directly derived.

View Article and Find Full Text PDF

Cerebral amyloid angiopathy (CAA) is a common disorder of the elderly, a prominent comorbidity of Alzheimer's disease, and causes vascular cognitive impairment and dementia. Previously, we generated a novel transgenic rat model (rTg-D) that produces human familial CAA Dutch E22Q mutant amyloid β-protein (Aβ) in brain and develops arteriolar CAA type-2. Here, we show that deposition of fibrillar Aβ promotes arteriolar smooth muscle cell loss and cerebral microhemorrhages that can be detected by magnetic resonance imaging and confirmed by histopathology.

View Article and Find Full Text PDF

Respiration can positively influence cerebrospinal fluid (CSF) flow in the brain, yet its effects on central nervous system (CNS) fluid homeostasis, including waste clearance function via glymphatic and meningeal lymphatic systems, remain unclear. Here, we investigated the effect of supporting respiratory function via continuous positive airway pressure (CPAP) on glymphatic-lymphatic function in spontaneously breathing anesthetized rodents. To do this, we used a systems approach combining engineering, MRI, computational fluid dynamics analysis, and physiological testing.

View Article and Find Full Text PDF
Article Synopsis
  • The choroid plexus (ChP) is critical for producing cerebrospinal fluid (CSF) and supporting immune functions in the brain's blood-to-CSF barrier.
  • This study utilized non-invasive magnetic resonance imaging to measure blood flow in the ChP and the exchange of water between blood and CSF, validating the methods through the effects of vasopressin.
  • The findings revealed that anesthetic type significantly influences ChP blood perfusion, and while a correlation between blood flow and water flow was discovered, overall water flow remained consistent across different anesthetics.
View Article and Find Full Text PDF
Article Synopsis
  • Cerebral small vessel disease (SVD) is a leading cause of dementia and is linked to enlarged perivascular spaces (PVS) that can be seen on specialized MRI scans.
  • A study compared spontaneously hypertensive stroke prone (SHRSP) rats to control rats and discovered that the SVD severity in the SHRSP rats matched the 'moderate' SVD found in human brains after death.
  • Using both T2-weighted imaging and a technique involving gadoteric acid, researchers were able to better visualize PVS-like lesions in the SHRSP rats, highlighting their clinical importance for understanding SVD.
View Article and Find Full Text PDF

Background: Hydrocephalus (increased ventricular size due to CSF accumulation) is a common finding in human ciliopathies and in mouse models with genetic depletion of the multiciliated cell (MCC) cilia machinery. However, the contribution of MCC to CSF dynamics and, the mechanism by which impaired MCC function leads to hydrocephalus remains poorly understood. The aim of our study was to examine if defects in MCC ciliogenesis and cilia-generated CSF flow impact central nervous system (CNS) fluid homeostasis including glymphatic transport and solute waste drainage.

View Article and Find Full Text PDF

Cerebral amyloid angiopathy (CAA), characterized by cerebral vascular amyloid accumulation, neuroinflammation, microbleeds, and white matter (WM) degeneration, is a common comorbidity in Alzheimer disease and a prominent contributor to vascular cognitive impairment and dementia. WM loss was recently reported in the corpus callosum (CC) in the rTg-DI rat model of CAA. The current study shows that the CC exhibits a much lower CAA burden compared with the adjacent cortex.

View Article and Find Full Text PDF

Dorsal striatal dopamine transmission engages the cortico-striato-thalamo-cortical (CSTC) circuit, which is implicated in many neuropsychiatric diseases, including obsessive-compulsive disorder (OCD). Yet it is unknown if dorsal striatal dopamine hyperactivity is the cause or consequence of changes elsewhere in the CSTC circuit. Classical pharmacological and neurotoxic manipulations of the CSTC and other brain circuits suffer from various drawbacks related to off-target effects and adaptive changes.

View Article and Find Full Text PDF

Purpose: Dynamic contrast-enhanced MRI (DCE-MRI) represents the only available approach for glymphatic cerebrospinal fluid (CSF) flow 3D mapping in the brain of living animals and humans. The purpose of this study was to develop a novel DCE-MRI protocol for mapping of the glymphatic system transport with improved spatiotemporal resolution, and to validate the new protocol by comparing the transport in mice anesthetized with either isoflurane or ketamine/xylazine.

Methods: The contrast agent, gadobutrol, was administered into the CSF of the cisterna magna and its transport visualized continuously on a 9.

View Article and Find Full Text PDF

In this work, a unified representation of all the time-varying dynamics is accomplished with a Lagrangian framework for analyzing Fisher-Rao regularized dynamical optimal mass transport (OMT) derived flows. While formally equivalent to the Eulerian based Schrödinger bridge OMT regularization scheme, the Fisher-Rao approach allows a simple and interpretable methodology for studying the flows of interest in the present work. The advantage of the proposed Lagrangian technique is that the time-varying particle trajectories and attributes are displayed in a single visualization.

View Article and Find Full Text PDF

Background: Large differences in glymphatic system transport-similar in magnitude to those of the sleep/wake cycle-have been observed during anesthesia with dexmedetomidine supplemented with low dose isoflurane (DEXM-I) in comparison to isoflurane (ISO). However, the biophysical and bioenergetic tissue status underlying glymphatic transport differences between anesthetics remains undefined. To further understand biophysical characteristics underlying these differences we investigated volume status across cerebral tissue compartments, water diffusivity, and T2* values in rats anesthetized with DEXM-I in comparison to ISO.

View Article and Find Full Text PDF

Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage.

View Article and Find Full Text PDF

The brain's high bioenergetic state is paralleled by high metabolic waste production. Authentic lymphatic vasculature is lacking in brain parenchyma. Cerebrospinal fluid (CSF) flow has long been thought to facilitate central nervous system detoxification in place of lymphatics, but the exact processes involved in toxic waste clearance from the brain remain incompletely understood.

View Article and Find Full Text PDF

Cerebral small vessel disease (SVD) is a major health burden, yet the pathophysiology remains poorly understood with no effective treatment. Since much of SVD develops silently and insidiously, non-invasive neuroimaging such as MRI is fundamental to detecting and understanding SVD in humans. Several relevant SVD rodent models are established for which MRI can monitor in vivo changes over time prior to histological examination.

View Article and Find Full Text PDF

Dynamic contrast-enhanced magnetic resonance imaging (MRI) for tracking glymphatic system transport with paramagnetic contrast such as gadoteric acid (Gd-DOTA) administration into cerebrospinal fluid (CSF) requires pre-contrast data for proper quantification. Here we introduce an alternative approach for glymphatic system quantification in the mouse brain via T1 mapping which also captures drainage of Gd-DOTA to the cervical lymph nodes. The Gd-DOTA injection into CSF was performed on the bench after which the mice underwent T1 mapping using a 3D spoiled gradient echo sequence on a 9.

View Article and Find Full Text PDF

Diffuse white matter (WM) disease is highly prevalent in elderly with cerebral small vessel disease (cSVD). In humans, cSVD such as cerebral amyloid angiopathy (CAA) often coexists with Alzheimer's disease imposing a significant impediment for characterizing their distinct effects on WM. Here we studied the burden of age-related CAA pathology on WM disease in a novel transgenic rat model of CAA type 1 (rTg-DI).

View Article and Find Full Text PDF

Perivascular spaces include a variety of passageways around arterioles, capillaries and venules in the brain, along which a range of substances can move. Although perivascular spaces were first identified over 150 years ago, they have come to prominence recently owing to advances in knowledge of their roles in clearance of interstitial fluid and waste from the brain, particularly during sleep, and in the pathogenesis of small vessel disease, Alzheimer disease and other neurodegenerative and inflammatory disorders. Experimental advances have facilitated in vivo studies of perivascular space function in intact rodent models during wakefulness and sleep, and MRI in humans has enabled perivascular space morphology to be related to cognitive function, vascular risk factors, vascular and neurodegenerative brain lesions, sleep patterns and cerebral haemodynamics.

View Article and Find Full Text PDF

The glymphatic system (GS) hypothesis states that advective driven cerebrospinal fluid (CSF) influx from the perivascular spaces into the interstitial fluid space rapidly transport solutes and clear waste from brain. However, the presence of advection in neuropil is contested and solutes are claimed to be transported by diffusion only. To address this controversy, we implemented a regularized version of the optimal mass transport (rOMT) problem, wherein the advection/diffusion equation is the only a priori assumption required.

View Article and Find Full Text PDF

The accumulation of fibrillar amyloid β-protein (Aβ) in blood vessels of the brain, the condition known as cerebral amyloid angiopathy (CAA), is a common small vessel disease that promotes cognitive impairment and is strongly associated with Alzheimer's disease. Presently, the clinical diagnosis of this condition relies on neuroimaging markers largely associated with cerebral macro/microbleeds. However, these are markers of late-stage disease detected after extensive cerebral vascular amyloid accumulation has become chronic.

View Article and Find Full Text PDF

The glymphatic system is a brainwide CSF transport system that uses the perivascular space for fast inflow of CSF. Arterial pulsations are a major driver of glymphatic CSF inflow, and hypertension that causes vascular pathologies, such as arterial stiffening and perivascular alterations, may impede the inflow. We used dynamic contrast-enhanced MRI to assess the effect of hypertension on glymphatic transport kinetics in male young and adult spontaneously hypertensive (SHR) rats compared with age-matched normotensive Wistar-Kyoto rats (WKY).

View Article and Find Full Text PDF

Chemogenetic studies with the ligand clozapine N-oxide (CNO) are predicated upon the assumption that CNO is devoid of actions at natural neuroreceptors. However, recent evidence shows that CNO may be converted back to clozapine (CLZ) , which could yield plasma concentrations that may be sufficient to occupy inter alia dopamine D and serotonin 5HT receptors in living brain. To test this phenomenon, we measured striatal dopamine D receptor occupancy with [F]fallypride PET and serotonin 5HT occupancy using [F]MH.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondhhlpikivt6mjkphbl6gf1abscpqitoc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once