Publications by authors named "Heddy Soufari"

Antibiotic resistance ABC-Fs (ARE ABC-Fs) are translation factors that provide resistance against clinically important ribosome-targeting antibiotics which are proliferating among pathogens. Here, we combine genetic and structural approaches to determine the regulation of streptococcal ARE ABC-F gene msrD in response to macrolide exposure. We show that binding of cladinose-containing macrolides to the ribosome prompts insertion of the leader peptide MsrDL into a crevice of the ribosomal exit tunnel, which is conserved throughout bacteria and eukaryotes.

View Article and Find Full Text PDF

PARP13/ZAP (zinc-finger antiviral protein) acts against multiple viruses by promoting degradation of viral mRNA. PARP13 has four N-terminal zinc (Zn) fingers that bind CG-rich nucleotide sequences, a C-terminal ADP ribosyltransferase fold, and a central region with a fifth Zn finger and tandem WWE domains. The central PARP13 region, ZnF5-WWE1-WWE2, is implicated in binding poly(ADP-ribose); however, there are limited insights into its structure and function.

View Article and Find Full Text PDF

Mitochondria are the powerhouse of eukaryotic cells. They possess their own gene expression machineries where highly divergent and specialized ribosomes, named hereafter mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial genomes. Here, we present a biochemical and structural characterization of the mitoribosome in the model green alga Chlamydomonas reinhardtii, as well as a functional study of some of its specific components.

View Article and Find Full Text PDF
Article Synopsis
  • Cryo-electron microscopy (cryo-EM) is a key technique in structural biology for examining protein synthesis via ribosomes, requiring stable and pure samples for high-resolution images.
  • A new protocol has been developed for purifying stable 30 S ribosomal subunits from a Gram-positive bacterium, highlighting the importance of spermidine in maintaining the structure.
  • The study reveals that ribosomes in the presence of spermidine achieve resolutions of 3.4 to 3.6 Å, while those without it can only reach 5.3 Å, underscoring spermidine's role in stabilizing critical ribosomal structures.
View Article and Find Full Text PDF
Article Synopsis
  • The formation of the 43S pre-initiation complex (PIC) is crucial for canonical mRNA translation in eukaryotes, involving initiator Met-tRNA and several eukaryotic initiation factors (eIFs) bound to the small ribosomal subunit (40S).
  • Structural differences in the 40S ribosomal subunit of trypanosomatids, like Trypanosoma cruzi (the cause of Chagas disease), indicate variability in translation initiation compared to mammals.
  • The study reveals unique features of the 43S PIC structure, including a distinct eIF3 structure, interactions with rRNA expansion segments, and the role of a kinetoplastid-specific helicase, supported by biochemical assays and mass spect
View Article and Find Full Text PDF

Dicistrovirus intergenic region internal ribosomal entry sites (IGR IRESs) do not require initiator tRNA, an AUG codon, or initiation factors and jumpstart translation from the middle of the elongation cycle via formation of IRES/80S complexes resembling the pre-translocation state. eEF2 then translocates the [codon-anticodon]-mimicking pseudoknot I (PKI) from ribosomal A sites to P sites, bringing the first sense codon into the decoding center. Halastavi árva virus (HalV) contains an IGR that is related to previously described IGR IRESs but lacks domain 2, which enables these IRESs to bind to individual 40S ribosomal subunits.

View Article and Find Full Text PDF

Kinetoplastids are unicellular eukaryotic parasites responsible for such human pathologies as Chagas disease, sleeping sickness, and leishmaniasis. They have a single large mitochondrion, essential for the parasite survival. In kinetoplastid mitochondria, most of the molecular machineries and gene expression processes have significantly diverged and specialized, with an extreme example being their mitochondrial ribosomes.

View Article and Find Full Text PDF

Mitochondria are the powerhouses of eukaryotic cells and the site of essential metabolic reactions. Complex I or NADH:ubiquinone oxidoreductase is the main entry site for electrons into the mitochondrial respiratory chain and constitutes the largest of the respiratory complexes. Its structure and composition vary across eukaryote species.

View Article and Find Full Text PDF

The replication independent (RI) histone H2A.Z is one of the more extensively studied variant members of the core histone H2A family, which consists of many replication dependent (RD) members. The protein has been shown to be indispensable for survival, and involved in multiple roles from DNA damage to chromosome segregation, replication, and transcription.

View Article and Find Full Text PDF

The vast majority of eukaryotic cells contain mitochondria, essential powerhouses and metabolic hubs. These organelles have a bacterial origin and were acquired during an early endosymbiosis event. Mitochondria possess specialized gene expression systems composed of various molecular machines, including the mitochondrial ribosomes (mitoribosomes).

View Article and Find Full Text PDF

Precise regulation of mRNA processing, translation, localization, and stability relies on specific interactions with RNA-binding proteins whose biological function and target preference are dictated by their preferred RNA motifs. The RBPMS family of RNA-binding proteins is defined by a conserved RNA recognition motif (RRM) domain found in metazoan RBPMS/Hermes and RBPMS2, couch potato, and MEC-8 from In order to determine the parameters of RNA sequence recognition by the RBPMS family, we have first used the N-terminal domain from MEC-8 in binding assays and have demonstrated a preference for two GCAC motifs optimally separated by >6 nucleotides (nt). We have also determined the crystal structure of the dimeric N-terminal RRM domain from MEC-8 in the unbound form, and in complex with an oligonucleotide harboring two copies of the optimal GCAC motif.

View Article and Find Full Text PDF

The FK506-binding protein (FKBP) family of peptidyl-prolyl isomerases (PPIases) is characterized by a common catalytic domain that binds to the inhibitors FK506 and rapamycin. As one of four FKBPs within the yeast Saccharomyces cerevisiae, Fpr4 has been described as a histone chaperone, and is in addition implicated in epigenetic function in part due to its mediation of cis-trans conversion of proline residues within histone tails. To better understand the molecular details of this activity, we have determined the solution structure of the Fpr4 C-terminal PPIase domain by using NMR spectroscopy.

View Article and Find Full Text PDF

Peptidylprolyl isomerases have been implicated in chromatin regulation through their association with histones, chromatin-modifying enzymes and DNA-binding transcription factors. As with other post-translational modifications to proteins, a mechanistic understanding of the regulation of biological processes is fostered by loss-of-function studies both in vitro and in vivo. For peptidylprolyl isomerases, this can be accomplished with small-molecule inhibitors with high affinity for the isomerase active site or by mutation of amino acid residues that contribute to catalysis.

View Article and Find Full Text PDF