The original version of this Article contained an error in the spelling of the author Brett L. Ecker, which was incorrectly given as Brett Ecker. This has now been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDFProlyl hydroxylase domain protein 2 (PHD2) is a well-known master oxygen sensor. However, the role of PHD2 in tumor initiation remains controversial. We find that during the transition of human nevi to melanoma, the expression of PHD2 protein is significantly decreased and lower expression PHD2 in melanoma is associated with worse clinical outcome.
View Article and Find Full Text PDFThe central pathway for controlling red cell mass is the PHD (prolyl hydroxylase domain protein):hypoxia-inducible factor (HIF) pathway. HIF, which is negatively regulated by PHD, activates numerous genes, including ones involved in erythropoiesis, such as the ERYTHROPOIETIN (EPO) gene. Recent studies have implicated PHD2 as the key PHD isoform regulating red cell mass.
View Article and Find Full Text PDFThe central pathway for oxygen-dependent control of red cell mass is the prolyl hydroxylase domain protein (PHD):hypoxia inducible factor (HIF) pathway. PHD site specifically prolyl hydroxylates the transcription factor HIF-α, thereby targeting the latter for degradation. Under hypoxia, this modification is attenuated, allowing stabilized HIF-α to activate target genes, including that for erythropoietin (EPO).
View Article and Find Full Text PDF