Publications by authors named "Hector Rodriguez-Rodriguez"

Several aspects contributing to the temporal broadening in the measurement of ultrafast fluorescence by means of up-conversion wave mixing are presented: the characteristics of the sample, those of the collection optics, and the wave mixing with the gate pulse in a non-linear crystal. It is concluded that these contributions are emission wavelength dependent and can be as important as the pulse durations in determining the instrument response function in this technique.

View Article and Find Full Text PDF

Heat generation by pointlike structures is an appealing concept for its implications in nanotechnology and biomedicine. The way to pump energy that excites heat locally and the synthesis of nanostructures that absorb such energy are key issues in this endeavor. High-frequency alternating magnetic or near-infrared optical fields are used to induce heat in iron oxide nanoparticles, a combined solution that is being exploited in hyperthermia treatments.

View Article and Find Full Text PDF

Laser tweezers afford quantum dot (QD) manipulation for use as localized emitters. Here, we demonstrate fluorescence by radiative energy transfer from optically trapped colloidal QDs (donors) to fluorescent dyes (acceptors). To this end, we synthesized silica-coated QDs of different compositions and triggered their luminescence by simultaneous trapping and two-photon excitation in a microfluidic chamber filled with dyes.

View Article and Find Full Text PDF

3D remote control of multifunctional fluorescent up-converting nanoparticles (UCNPs) using optical forces is being required for a great variety of applications including single-particle spectroscopy, single-particle intracellular sensing, controlled and selective light-activated drug delivery and light control at the nanoscale. Most of these potential applications find a serious limitation in the reduced value of optical forces (tens of fN) acting on these nanoparticles, due to their reduced dimensions (typically around 10 nm). In this work, this limitation is faced and it is demonstrated that the magnitude of optical forces acting on UCNPs can be enhanced by more than one order of magnitude by a controlled modification of the particle/medium interface.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpcvvtb9tpiphc6c67afrgu143ga9h7ur): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once