Publications by authors named "Hector Quezada"

Ethnopharmacological Relevance: Cuachalalate (Amphipterygium adstringens) stem bark has been used to heal wounds and counteract microbial infections since pre-Hispanic times. However, its effect in treating infected burns remains unclear.

Study Objectives: To determine the antipathogenic capacity of a folk remedy (FR) containing cuachalalate stem bark to treat lesions caused by thermal damage and bacterial infection.

View Article and Find Full Text PDF

Cellular interactions within the bone marrow microenvironment modulate the properties of subsets of leukemic cells leading to the development of drug-resistant phenotypes. The intercellular transfer of proteins and organelles contributes to this process but the set of transferred proteins and their effects in the receiving cells remain unclear. This study aimed to detect the intercellular protein transfer from mouse bone marrow stromal cells (OP9 cell line) to human T-lymphoblasts (CCRF-CEM cell line) using nanoLC-MS/MS-based shotgun proteomics in a 3D co-culture system.

View Article and Find Full Text PDF

Quorum sensing (QS) and type III secretion systems (T3SSs) are among the most attractive anti-virulence targets for combating multidrug-resistant pathogenic bacteria. Some halogenated furanones reduce QS-associated virulence, but their role in T3SS inhibition remains unclear. This study aimed to assess the inhibition of these two systems on virulence.

View Article and Find Full Text PDF

Breast cancer is the most frequent malignancy among women in developed countries and the main cause of death related to cancer in women worldwide. Extracellular vesicles (EVs) are vesicles with a variable size enclosed within a phospholipid bilayer that contain a variety of molecules with biological activity. Cancer cells release EVs that induce proliferation, escape from apoptosis, reprogramming energy metabolism, invasion and metastasis.

View Article and Find Full Text PDF

Antimicrobial resistance is one of the current public health challenges to be solved. The World Health Organization (WHO) has urgently called for the development of strategies to expand the increasingly limited antimicrobial arsenal. The development of anti-virulence therapies is a viable option to counteract bacterial infections with the possibility of reducing the generation of resistance.

View Article and Find Full Text PDF

Several plant extracts exhibit anti-virulence properties due to the interruption of bacterial quorum sensing (QS). However, studies on their effects at the preclinical level are scarce. Here, we used a murine model of abscess/necrosis induced by to evaluate the anti-pathogenic efficacy of 24 plant extracts at a sub-inhibitory concentration.

View Article and Find Full Text PDF

Cytochrome c (cyt-c) release from the mitochondria to the cytosol is a key process in the initiation of hepatocyte apoptosis involved in the progression of non-alcoholic fatty liver disease (NAFLD) to fibrosis, cirrhosis and hepatocellular carcinoma. Hepatocyte apoptosis may be related to lipotoxicity due to the accumulation of palmitic acid and palmitoyl-CoA (Pal-CoA). Therefore, the aim of this study is to examine whether Pal-CoA induces cyt-c release from liver mitochondria of sucrose-fed rat (SF).

View Article and Find Full Text PDF

Cutaneous drug-induced reactions are immune-mediated responses that can lead to life-threatening diseases such as drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome, and toxic epidermal necrolysis, collectively known as severe cutaneous adverse reactions (SCARs). Unfortunately, they cannot be predicted during drug development, and, at present, a prognostic biomarker is not available nor are validated assays for diagnosis. Thus, by using proteomic and microarray miRNA analysis, the cargo of extracellular vesicles obtained from SCARs patients was analyzed and correlated with the severity of the reaction.

View Article and Find Full Text PDF

The genome of the SARS-CoV-2 virus, the causal agent of the COVID-19 pandemic, has diverged due to multiple mutations since its emergence as a human pathogen in December 2019. Some mutations have defined several SARS-CoV-2 clades that seem to behave differently in terms of regional distribution and other biological features. Next-generation sequencing (NGS) approaches are used to classify the sequence variants in viruses from individual human patients.

View Article and Find Full Text PDF

The reference standard for the molecular diagnostic testing for COVID-19 is the use of nasopharyngeal or combined nasopharyngeal and oropharyngeal (NP/OP) swabs. Saliva has been proposed as a minimally invasive specimen whose collection reduces the risks for health care personnel. To assess the suitability of saliva for COVID-19 diagnosis as a replacement of the reference standard NP/OP swab in the setting of a tertiary care pediatric unit.

View Article and Find Full Text PDF

Background: Pituitary adenomas (PA) are the second most common tumor in the central nervous system and have low counts of mutated genes. Splicing occurs in 95% of the coding RNA. There is scarce information about the spliceosome and mRNA-isoforms in PA, and therefore we carried out proteomic and transcriptomic analysis to identify spliceosome components and mRNA isoforms in PA.

View Article and Find Full Text PDF

Cronobacter sakazakii is an opportunistic foodborne pathogen associated with necrotizing enterocolitis, bacteremia, and meningitis in infants. A comparative proteomic study of C. sakazakii ATCC BAA-894 (CS WT) and a fliF::Tn5 mutant was performed, including the ability of both strains to adhere to and invade N1E-115 cells.

View Article and Find Full Text PDF

Background: Diagnostic testing for coronavirus disease (COVID)-19 is performed using nasopharyngeal swabs. This type of sampling is uncomfortable for the patient, dangerous for health workers, and its high demand has led to a global shortage of swabs. One of the alternative specimens is saliva.

View Article and Find Full Text PDF

Alcoholic liver disease (ALD) may be attributed to multiple hits driving several alterations. The aim of this work was to determine whether nucleoredoxin (NXN) interacts with flightless-I (FLII)/actin complex and how this ternary complex is altered during ALD progression induced by different ALD models. ALD was recapitulated in C57BL/6J female mice by the well-known ALD Lieber-DeCarli model, and by an in vitro human co-culture system overexpressing NXN.

View Article and Find Full Text PDF

Background: Accumulation of lipid aldehydes plays a key role in the etiology of human diseases where high levels of oxidative stress are generated. In this regard, activation of aldehyde dehydrogenases (ALDHs) prevents oxidative tissue damage during ischemia-reperfusion processes. Although omeprazole is used to reduce stomach gastric acid production, in the present work this drug is described as the most potent activator of human ALDH1A1 reported yet.

View Article and Find Full Text PDF

Quorum sensing in controls the production of costly public goods such as exoproteases. This cooperative behavior is susceptible to social cheating by mutants that do not invest in the exoprotease production but assimilate the amino acids and peptides derived by the hydrolysis of proteins in the extracellular media. In sequential cultures with protein as the sole carbon source, these social cheaters are readily selected and often reach equilibrium with the exoprotease producers.

View Article and Find Full Text PDF

Streptococcus pneumoniae is a causal agent of otitis media, pneumonia, meningitis and severe cases of septicemia. This human pathogen infects elderly people and children with a high mortality rate of approximately one million deaths per year worldwide. Antibiotic-resistance of S.

View Article and Find Full Text PDF

As current levels of antimicrobial resistance are alarming, the World Health Organization urged the development of new antimicrobials to fight infections produced by multidrug resistant bacteria. Antibiotics impose severe selective pressure for the development of resistance, and currently bacteria resistant to all of them exist. In this review, we discuss the release and development of new antibacterial drugs and their properties as well as the current advances in the development of alternative approaches to combat bacterial infections, including the repurposing of drugs, anti-virulence therapies, the use of photosensitizers, phage therapy, and immunotherapies, with an emphasis on what is currently known about the possible development of bacterial resistance against them.

View Article and Find Full Text PDF

Studies on the fate of Saccharomyces cerevisiae paralogous gene pairs that arose through a whole-genome duplication event have shown diversification of retained duplicated genes. Paralogous functional specialization often results in improved function and/or novel function that could contribute to the adaptation of the organism to a new lifestyle. Here, we analyze and discuss particular case studies of paralogous functional diversification that could have played a role in the acquisition of yeast fermentative metabolism.

View Article and Find Full Text PDF

In recent years, the use of high-throughput omics technologies has led to the rapid discovery of many candidate biomarkers. However, few of them have made the transition to the clinic. In this review, the promise of omics technologies to contribute to the process of biomarker development is described.

View Article and Find Full Text PDF

Background: Chemical pesticides, widely used in agriculture and vector-borne disease control, have shown toxic effects on the environment and the people in contact with them. Bacillus thuringiensis is a widely used bacterium for alternative and safer control of insect pests. Its toxins are specific for insects but innocuous for mammals and may be used as powerful adjuvants when applied with vaccines.

View Article and Find Full Text PDF

Introduction: Relapse occurs in approximately 20% of Mexican patients with childhood acute lymphoblastic leukemia (ALL). In this group, chemoresistance may be one of the biggest challenges. An overview of complex cellular processes like drug tolerance can be achieved with proteomic studies.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondriopathies are complex diseases impacting the oxidative phosphorylation system, with skin fibroblasts used to study their mechanisms and functions.
  • Fibroblasts with complex IV defects confirmed the disease phenotype and revealed significant issues in the OXPHOS system, particularly in protein complexes that form supercomplexes.
  • The findings highlight that these mitochondriopathies not only affect energy production but also disrupt DNA processes and metabolic pathways, which can improve disease classification and treatment approaches.
View Article and Find Full Text PDF