Publications by authors named "Hector Nieves-Rosado"

CD8 T cells are critical mediators of antitumor immunity but differentiate into a dysfunctional state, known as T cell exhaustion, after persistent T cell receptor stimulation in the tumor microenvironment (TME). Exhausted T (T) cells are characterized by upregulation of coinhibitory molecules and reduced polyfunctionality. T cells in the TME experience an immunosuppressive metabolic environment via reduced levels of nutrients and oxygen and a buildup of lactic acid.

View Article and Find Full Text PDF

Expression of T cell Ig and mucin domain-containing protein 3 (Tim-3) is upregulated on regulatory T cells (Tregs) during chronic viral infections. In several murine and human chronic infections, the expression of Tim-3 is associated with poor control of viral burden and impaired antiviral immune responses. However, the role of Tim-3+ Tregs during persistent viral infections has not been fully defined.

View Article and Find Full Text PDF

TIM-3 expression is increased on peripheral regulatory T cells (Tregs) of virally suppressed persons with HIV-1 on antiretroviral therapy (PWH-ART). However, the relevance of TIM-3 expression in this setting is unclear. We used flow cytometry to evaluate the suppressive phenotype and signaling pathways in peripheral TIM-3- vs TIM-3+ Tregs in PWH-ART.

View Article and Find Full Text PDF

Regulatory T cells (Treg cells) are critical mediators of self-tolerance, but they can also limit effective anti-tumor immunity. Although under homeostasis a small fraction of Treg cells in lymphoid organs express the putative checkpoint molecule Tim-3, this protein is expressed by a much larger proportion of tumor-infiltrating Treg cells. Using a mouse model that drives cell-type-specific inducible Tim-3 expression, we show that expression of Tim-3 by Treg cells is sufficient to drive Treg cells to a more effector-like phenotype, resulting in increases in suppressive activity, effector T cell exhaustion, and tumor growth.

View Article and Find Full Text PDF