Publications by authors named "Hector Masuh"

One of the main vectors for malaria in Latin America is Anopheles pseudopunctipennis (Theobald), whereas Aedes aegypti (L.) is the primary vector of dengue, yellow fever, Zika and chikungunya viruses. The use of repellents is recommended as a personal protection method against these mosquitoes.

View Article and Find Full Text PDF
Article Synopsis
  • Aedes aegypti, a mosquito that transmits serious diseases, has developed resistance to synthetic insecticides, making alternative control methods necessary.
  • This study uses RNA-Seq to analyze gene expression in Aedes aegypti larvae after exposure to Eucalyptus camaldulensis essential oil, revealing genes related to detoxification and chemosensory responses.
  • The findings highlight the potential of Eucalyptus-derived compounds in mosquito control by identifying gene families involved in detoxification, which could enhance the effectiveness of natural larvicides in managing mosquito populations.
View Article and Find Full Text PDF

Objective: To assess the influence of soil on the effectiveness of two new slow-release formulations (floating and non-floating) of pyriproxyfen coextruded with low-density polyethylene.

Methods: Two slow-release devices were developed using low-density polyethylene, pyriproxyfen as larvicide and calcium carbonate as filler. A factorial design was used to evaluate the effect of soil presence on the performance of each device.

View Article and Find Full Text PDF

An essential strategy to deal with mosquito-borne diseases is the control of larvae in their development sites. The mosquitoes Anopheles pseudopunctipennis (Theobald) (Diptera: Culicidae), a malaria vector, and Aedes aegypti (L.) (Diptera: Culicidae), vector of dengue, Zika, yellow fever, and chikungunya viruses, breed in very different habitats.

View Article and Find Full Text PDF

Severe human arboviral diseases can be transmitted by the mosquito Aedes aegypti (L.), including dengue, chikungunya, zika, and yellow fever. The use of larvicides in containers that can result as potential breeding places and cannot be eliminated is the main alternative in control programs.

View Article and Find Full Text PDF

Dengue, chikungunya, and yellow fever are important vector-borne diseases transmitted by female mosquitoes when they feed on humans. The use of repellents based on natural products is an alternative for personal protection against these diseases. Application of chemicals with larvicidal activity is another strategy for controlling the mosquito population.

View Article and Find Full Text PDF

Aedes aegypti (L.) is the primary vector of dengue, yellow fever, Zika, and chikungunya viruses, whereas Anopheles pseudopunctipennis (Theobald) is the principal vector for malaria in Latin America. The larval stage of these mosquitoes occurs in very different development habitats, and the study of their respective behaviors could give us valuable information to improve larval control.

View Article and Find Full Text PDF

Aedes aegypti (L.) is a species of international concern because of its ability to transmit serious human arboviral diseases including yellow fever, dengue, and chikungunya, which have spread to all continents. Ovitraps are containers constructed to imitate Aedes' natural breeding sites and have been used for many decades as a sensitive and inexpensive surveillance tool for detecting the presence of container-inhabiting mosquitoes.

View Article and Find Full Text PDF

Aedes aegypti (L.) is an important dengue, chikungunya, and yellow fever vector. Immature stages of this species inhabit human-made containers placed in residential landscapes, and the application of larvicides inside containers that cannot be eliminated is still considered a priority in control programs.

View Article and Find Full Text PDF

In mosquitoes, location of suitable sites for oviposition requires a set of visual, tactile, and olfactory cues that influences females before laying their eggs. The ability of gravid females to distinguish among potential oviposition sites that will or will not support the growth, development, and survival of their progeny is critical. Aedes aegypti (L.

View Article and Find Full Text PDF

Aedes aegypti (L.) (Diptera: Culicidae) is the key vector of three important arboviral diseases: dengue, yellow fever, and chikungunya. Immature stages of this species inhabit human-made containers placed in residential landscapes.

View Article and Find Full Text PDF

The relationships between physicochemical parameters of majority components of Eucalyptus essential oils and their insecticide effect were evaluated on Aedes aegypti (L.) (Diptera: Culicidae). The octanol-water partition coefficients of the monoterpenes were estimated by the atom/fragment contribution method and the vapor pressures were determined by our laboratory in previous studies.

View Article and Find Full Text PDF

Background: Chagas disease prevention critically depends on keeping houses free of triatomine vectors. Insecticide spraying is very effective, but re-infestation of treated dwellings is commonplace. Early detection-elimination of re-infestation foci is key to long-term control; however, all available vector-detection methods have low sensitivity.

View Article and Find Full Text PDF

Objectives: To compare the effectiveness on Aedes aegypti (Linneo) (Diptera: Culicidae) of a larvicide-adulticide ULV formulation applied by a thermal or a cold fogger using different solvents.

Methods: We applied, in field conditions, a ULV formulation containing pyriproxyfen and permethrin, using a thermal and a cold fogger and water or diesel as solvent. We determined the effectiveness of these applications on Ae.

View Article and Find Full Text PDF

The aim of this work is to validate the pre-existing models that relate the larvicidal and adulticidal activities of the Eucalyptus essential oils on Aedes aegypti. Previous works at our laboratory described that the larvicidal activity of Eucalyptus essential oils can be estimated from the relative concentration of two main components (p-cymene and 1,8-cineole) and that the adulticidal effectiveness can be explained, to a great extent, by the presence of large amounts of the component 1,8-cineole in it. In general, the results show that the higher adulticidal effect of essential oils the lower their larvicidal activity.

View Article and Find Full Text PDF

Oils extracted from various species of Eucalyptus (Eucalyptus badjensis Beuzev & Welch, Eucalyptus badjensis x Eucalyptus nitens, Eucalyptus benthamii variety dorrigoensis Maiden & Cambage, Eucalyptus botryoides Smith, Eucalyptus dalrympleana Maiden, Eucalyptus fastigata Deane & Maiden, Eucalyptus nobilis L.A.S.

View Article and Find Full Text PDF

Background: When cases of dengue are reported or the density of adult Aedes aegypti (L.) becomes too high, ultralow-volume (ULV) application of insecticides is the recommended control method. The droplet size of an aerosol insecticide influences its efficiency in killing adult mosquitoes.

View Article and Find Full Text PDF

Dengue and dengue hemorrhagic fever are mosquito-borne viral diseases that coincide with the distribution of Aedes aegypti (L.), the primary vector in the tropical and semitropical world. With no available vaccine, controlling the dengue vector is essential to avoid epidemics.

View Article and Find Full Text PDF

The aim of the current study was to evaluate the fumigant activity of the essential oils from 11 species of the genus Eucalyptus and two of their hybrids on first instar of Blattella germanica L. The fumigant activity and repellence of the four major monoterpene components of these essential oils also were tested. Fumigant activity was evaluated by exposing nymphs to the vapors emitted by 50 microl of essential oil or monoterpene in a closed container.

View Article and Find Full Text PDF

A highly viscous formulation containing chlorpyrifos (RET) was evaluated under laboratory, pre-field, and field conditions, and compared against ear tags with organophosphorus insecticides. Laboratory bioassays were performed using Musca domestica L. and a thin layer chromatography (TLC) plate of reversed phase silica gel modeling a lipophilic surface.

View Article and Find Full Text PDF

During the past decades, chemical control against the head louse Pediculus humanus capitis De Geer has been based in the application of products containing permethrin. The repetitive overuse of pediculicides has resulted in the development of high levels of resistance to one or more of these products worldwide. Essential oils obtained from aromatic plants like Eucalyptus are good and safe alternatives due to their low toxicity to mammals and easy biodegradability.

View Article and Find Full Text PDF

Background: The most common ways to control dengue vector Aedes aegypti (L.) are larval source reduction in domestic habitats and ground application of small quantities of aerosol insecticide (ultralow volume). Nevertheless, these actions have been shown repeatedly to be ineffective in controlling Ae.

View Article and Find Full Text PDF

Monitoring of resistance of Aedes aegypti to temephos was implemented in the provinces of Formosa and Misiones, Argentina, as a response to the need to improve the vigilance for the dengue vector in areas of high risk of dengue. Eggs collected in each locality were reared, and susceptibility to temephos was assayed using larval bioassays. A weak decrease in susceptibility of larvae to temephos was observed in Clorinda and Puerto Iguazú, indicating an incipient resistance with a resistance ratio of 3.

View Article and Find Full Text PDF

A new ultralow volume formulation (ULV) containing permethrin as an adulticidal active ingredient and the insect growth regulator (IGR) pyriproxyfen as a larvicide was developed and its efficacy evaluated in a field trial in Wanda, Misiones (Argentina). Two separate study areas were sprayed: one with a ULV formulation of permethrin 15% plus pyriproxyfen 3% and the other with permethrin 15% only. A third untreated area was kept as a control.

View Article and Find Full Text PDF