This study aims to design microgels that are thermo- and pH-sensitive for controlled doxorubicin (Dox) release in response to tumor microenvironment changes. N-isopropylacrylamide (NIPAAm) is widely used for thermoresponsive tumor-targeted drug delivery systems for the release of therapeutic payloads in response to temperature changes. Herein, a NIPAAm microgel (MP) that is responsive to temperature and pH was designed for the smart delivery of Dox.
View Article and Find Full Text PDFThe potential antimicrobial and antibiofouling properties of previously synthesized PEG/NiPAAm interpenetrated polymer networks (IPNs) were investigated against three of the most common bacteria (, , and ). The main goal was to evaluate the material's biocompatibility and determine its potential use as an antifouling component in medical devices. This was intended to provide an alternative option that avoids drug usage as the primary treatment, thus contributing to the fight against antimicrobial resistance (AMR).
View Article and Find Full Text PDFThis work proposes the development of a polymer film made up of affordable components for its use as a healthcare material. Chitosan, itaconic acid, and fruit extract (Mexican variation) are the unique ingredients of this biomaterial prospect. Chitosan (from crustacean chitin) is crosslinked with itaconic acid, and in situ added fruit extract in a one-pot reaction carried out in water as the sole solvent.
View Article and Find Full Text PDFDual antimicrobial materials that have a combination of antimicrobial and antifouling properties were developed. They were developed through modification using gamma radiation of poly (vinyl chloride) (PVC) catheters with 4-vinyl pyridine (4VP) and subsequent functionalization with 1,3-propane sultone (PS). These materials were characterized by infrared spectroscopy, thermogravimetric analysis, swelling tests, and contact angle to determine their surface characteristics.
View Article and Find Full Text PDFCurrently, polyethylene terephthalate (PET) is one of the most widely used polymeric materials in different sectors such as medicine, engineering, and food, among others, due to its benefits, including biocompatibility, mechanical resistance, and tolerance to chemicals and/or abrasion. However, despite all these excellent characteristics, it is not capable of preventing the proliferation of microorganisms on its surface. Therefore, providing this property to PET remains a difficult challenge.
View Article and Find Full Text PDFNanocomposite materials have acquired great importance, as have similar composite materials on a macroscopic scale, because the reinforcement complements the defects in the properties of the matrix, thus obtaining materials with better mechanical, thermal, and electrical properties, among others. At the same time, the importance and research of polymeric nanocomposites reinforced with nanoparticles of various types have grown. Among those that have stood out the most in the electronics industry are polymeric matrices reinforced with nanoparticles that present dual behavior, that is, both magnetic and semiconductor.
View Article and Find Full Text PDFHydrogels are attractive biomaterials with favorable characteristics due to their water uptake capacity. However, hydrogel properties are determined by the cross-linking degree and nature, the tacticity, and the crystallinity of the polymer. These biomaterials can be sorted out according to the internal structure and by their response to external factors.
View Article and Find Full Text PDFThe design of new polymeric systems for antimicrobial drug release focused on medical/surgical procedures is of great interest in the biomedical area due to the high prevalence of bacterial infections in patients with wounds or burns. For this reason, in this work, we present a new design of pH-sensitive hydrogels copolymerized by a graft polymerization method (gamma rays), intended for localized prophylactic release of ciprofloxacin and silver nanoparticles (AgNPs) for potential topical bacterial infections. The synthesized hydrogels were copolymerized from acrylic acid (AAc) and agar.
View Article and Find Full Text PDFThe modification of medical devices is an area that has attracted a lot of attention in recent years; particularly, those developments which search to modify existing devices to render them antimicrobial. Most of these modifications involve at least two stages (modification of the base material with a polymer graft and immobilization of an antimicrobial agent) which are both time-consuming and complicate synthetic procedures; therefore, as an improvement, this project sought to produce antimicrobial silicone (PDMS) in a single step. Using gamma radiation as both an energy source for polymerization initiation and as a source of reducing agents in solution, PDMS was simultaneously grafted with acrylic acid and ethylene glycol dimethacrylate (AAc:EGDMA) while producing antimicrobial silver nanoparticles (AgNPs) onto the surface of the material.
View Article and Find Full Text PDFMaterials (Basel)
February 2021
New medical devices with anti-inflammatory properties are critical to prevent inflammatory processes and infections in medical/surgical procedures. In this work, we present a novel functionalization of silicone for medical use with a polymeric prodrug and a thermosensitive polymer, by graft polymerization (gamma rays), for the localized release of salicylic acid, an analgesic, and anti-inflammatory drug. Silicone rubber (SR) films were functionalized in two stages using graft polymerization from ionizing radiation (Co).
View Article and Find Full Text PDFSilicone rubber (SR) is a material used for medical procedures, with a common example of its application being in implants for cosmetic or plastic surgeries. It is also an essential component for the development of medical devices. SR was functionalized with the polymeric prodrug of poly(2-methacryloyloxy-benzoic acid) (poly(2MBA)) to render the analgesic anti-inflammatory drug salicylic acid by hydrolysis.
View Article and Find Full Text PDFMedical devices decorated with salicylic acid-based polymer chains (polymeric prodrug) that slowly release this anti-inflammatory and anti-biofilm drug at the implantation site were designed. A "grafting from" method was implemented to directly grow chains of a polymerizable derivative of salicylic acid (2-methacryloyloxy-benzoic acid, 2MBA) onto polypropylene (PP). PP was modified both at bulk and on the surface with poly(2MBA) by means of an oxidative pre-irradiation method ((60)Co source), in order to obtain a grafted polymer in which salicylic acid units were linked by means of labile ester bonds.
View Article and Find Full Text PDF