While most yeast enzymes for the biosynthesis of glycerophospholipids, sphingolipids and ergosterol are known, genes for several postulated transporters allowing the flopping of biosynthetic intermediates and newly made lipids from the cytosolic to the lumenal side of the membrane are still not identified. An E-MAP measuring the growth of 142'108 double mutants generated by systematically crossing 543 hypomorphic or deletion alleles in genes encoding multispan membrane proteins, both on media with or without an inhibitor of fatty acid synthesis, was generated. Flc proteins, represented by 4 homologous genes encoding presumed FAD or calcium transporters of the ER, have a severe depression of sphingolipid biosynthesis and elevated detergent sensitivity of the ER.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2015
Acyl-Coenzyme A is made in the cytosol. Certain enzymes using acyl-CoA seem to operate in the lumen of the ER but no corresponding flippases for acyl-CoA or an activated acyl have been described. In order to test the ability of purified candidate flippases to operate the transport of acyl-CoA through lipid bilayers in vitro we developed three enzyme-coupled assays using large unilamellar vesicles (LUVs) obtained by detergent removal.
View Article and Find Full Text PDFTemperature-sensitive cdc1(ts) mutants are reported to stop the cell cycle upon a shift to 30°C in early G2, that is, as small budded cells having completed DNA replication but unable to duplicate the spindle pole body. A recent report showed that PGAP5, a human homologue of CDC1, acts as a phosphodiesterase removing an ethanolamine phosphate (EtN-P) from mannose 2 of the glycosylphosphatidylinositol (GPI) anchor, thus permitting efficient endoplasmic reticulum (ER)-to-Golgi transport of GPI proteins. We find that the essential CDC1 gene can be deleted in mcd4∆ cells, which do not attach EtN-P to mannose 1 of the GPI anchor, suggesting that Cdc1 removes the EtN-P added by Mcd4.
View Article and Find Full Text PDFHumans and yeast possess alkaline ceramidases located in the early secretory pathway. Single deletions of the highly homologous yeast alkaline ceramidases YPC1 and YDC1 have very little genetic interactions or phenotypes. Here, we performed chemical-genetic screens to find deletions/conditions that would alter the growth of ypc1∆ydc1∆ double mutants.
View Article and Find Full Text PDFAll glycerophospholipids are made from phosphatidic acid, which, according to the traditional view, is generated at the cytosolic surface of the ER. In yeast, phosphatidic acid is synthesized de novo by two acyl-CoA-dependent acylation reactions. The first is catalysed by one of the two homologous glycerol-3-phosphate acyltransferases Gpt2p/Gat1p and Sct1p/Gat2p, the second by one of the two 1-acyl-sn-glycerol-3-phosphate acyltransferases Slc1p and Ale1p/Slc4p.
View Article and Find Full Text PDF