The occurrence of racemic and enantiomerically enriched (scalemic) mixtures of secondary metabolites in their natural sources is a rare phenomenon. The unprecedent case of enantiomeric variations from levorotatory to dextrorotatory, and back to levorotatory, passing through an almost racemic mixture, was recently documented for areolal, the major epoxythymol of Piptothrix areolare. In an attempt to shed some light to understand the reasons for such an unusual behavior, herein, we evaluated this phenomenon by correlating the areolal enantiomeric purity with several environmental variables, including temperature, humidity, rain precipitation, wind speed, and radiation during over 1 year of the plant life cycle.
View Article and Find Full Text PDFA biomimetic transformation of p-menthene glucosides into aromatic monoterpenoids that alluded to mechanisms for essential oil metabolism, which lines up with the precepts of molecular economy, is described. Acid treatment of (-)-(3 S,4 S,6 R)-3,6-dihydroxy-1-menthene 3- O-β-d-glucopyranoside (1) and (-)-(3 S,4 R,5 R,6 S)-3,5,6-trihydroxy-1-menthene 3- O-β-d-glucopyranoside (2), from Ageratina glabrata, yielded p-cymene (7) and carvacrol (9). The stable oxidized intermediates (+)-(3 S,4 S,6 R)-3,6-dihydroxy-1-menthene (3), (+)-(1 S,4 S,6 R)-1,6-dihydroxy-2-menthene (4), (+)-(1 R,4 S,6 R)-1,6-dihydroxy-2-menthene (5), (+)-(4 S,6 R)-yabunikkeol (6), (+)-(4 S)-carvotanacetone (8), (+)-(1 S,4 S,5 R,6 R)-1,5,6-trihydroxy-2-menthene (15), (+)-(1 R,4 S,5 R,6 R)-1,5,6-trihydroxy-2-menthene (16), and the new (+)-(4 S,5 R,6 S)-1(7),2-menthadiene (17) permitted establishment of the reaction mechanisms.
View Article and Find Full Text PDFThe aerial parts of Ageratina glabrata afforded (-)-(3S,4R,5R,6S)-3,5,6-trihydroxy-1-menthene 3-O-β-d-glucopyranoside (1) and (-)-(3S,4S,6R)-3,6-dihydroxy-1-menthene 3-O-β-d-glucopyranoside (3). Acid hydrolysis of 1 yielded (+)-(1R,4S,5R,6R)-1,5,6-trihydroxy-2-menthene (5) and (+)-(1S,4S,5R,6R)-1,5,6-trihydroxy-2-menthene (6), while hydrolysis of 3 yielded (+)-(3S,4S,6R)-3,6-dihydroxy-1-menthene (10), (+)-(1R,4S,6R)-1,6-dihydroxy-2-menthene (11), and (+)-(1S,4S,6R)-1,6-dihydroxy-2-menthene (12). The structures of the new compounds 1, 2, 5-9, and 11 were defined by 1D and 2D NMR experiments, while the absolute configurations of the series of compounds were determined by comparison of the experimental vibrational circular dichroism (VCD) spectra of the 1,6-acetonide 5-acetate derived from 6 and of the 1,6-acetonide derived from 12 with their DFT-calculated spectra.
View Article and Find Full Text PDF