Publications by authors named "Hector L Franco"

Triple-negative breast cancer (TNBC) is the most therapeutically recalcitrant form of breast cancer, which is due in part to the paucity of targeted therapies. A systematic analysis of regulatory elements that extend beyond protein-coding genes could uncover avenues for therapeutic intervention. To this end, we analyzed the regulatory mechanisms of TNBC-specific transcriptional enhancers together with their noncoding enhancer RNA (eRNA) transcripts.

View Article and Find Full Text PDF

Annotation of the -regulatory elements that drive transcriptional dysregulation in cancer cells is critical to improving our understanding of tumor biology. Herein, we present a compendium of matched chromatin accessibility (scATAC-seq) and transcriptome (scRNA-seq) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell-of-origin for luminal breast tumors and basal breast tumors and then introduce a novel methodology that implements linear mixed-effects models to systematically quantify associations between regions of chromatin accessibility (i.

View Article and Find Full Text PDF

Unlabelled: Setleis syndrome (SS) is a rare focal facial dermal dysplasia caused by recessive mutations in the basic helix-loop-helix (bHLH) transcription factor, TWIST2. Expression microarray analysis showed that the chordin-like 1 () gene is up-regulated in dermal fibroblasts from three SS patients with the Q119X TWIST2 mutation.

Methods: Putative TWIST binding sites were found in the upstream region of the gene and examined by electrophoretic mobility shift (EMSA) and reporter gene assays.

View Article and Find Full Text PDF

Purpose: In estrogen receptor-positive (ER+)/HER2- breast cancer, multiple measures of intratumor heterogeneity are associated with a worse response to endocrine therapy. We sought to develop a novel experimental model to measure heterogeneity in response to tamoxifen treatment in primary breast tumors.

Experimental Design: To investigate heterogeneity in response to treatment, we developed an operating room-to-laboratory pipeline for the collection of live normal breast specimens and human tumors immediately after surgical resection for processing into single-cell workflows for experimentation and genomic analyses.

View Article and Find Full Text PDF

Male breast cancer represents about 1% of all breast cancer diagnoses and, although there are some similarities between male and female breast cancer, the paucity of data available on male breast cancer makes it difficult to establish targeted therapies. To date, most male breast cancers (MBCs) are treated according to protocols established for female breast cancer (FBC). Thus, defining the transcriptional and epigenetic landscape of MBC with improved resolution is critical for developing better avenues for therapeutic intervention.

View Article and Find Full Text PDF

In ER+/HER2- breast cancer, multiple measures of intra-tumor heterogeneity are associated with worse response to endocrine therapy. To investigate heterogeneity in response to treatment, we developed an operating room-to-laboratory pipeline for the collection of live human tumors and normal breast specimens immediately after surgical resection for processing into single-cell workflows for experimentation and genomic analyses. We demonstrate differences in tamoxifen response by cell type and identify distinctly responsive and resistant subpopulations within the malignant cell compartment of human tumors.

View Article and Find Full Text PDF

The human genome contains regulatory elements, such as enhancers, that are often rewired by cancer cells for the activation of genes that promote tumorigenesis and resistance to therapy. This is especially true for cancers that have little or no known driver mutations within protein coding genes, such as ovarian cancer. Herein, we utilize an integrated set of genomic and epigenomic datasets to identify clinically relevant super-enhancers that are preferentially amplified in ovarian cancer patients.

View Article and Find Full Text PDF

Enhancers are critical regulatory elements in the genome that help orchestrate spatiotemporal patterns of gene expression during development and normal physiology. In cancer, enhancers are often rewired by various genetic and epigenetic mechanisms for the activation of oncogenes that lead to initiation and progression. A key feature of active enhancers is the production of non-coding RNA molecules called enhancer RNAs, whose functions remain unknown but can be used to specify active enhancers de novo.

View Article and Find Full Text PDF

Deconvolution of regulatory mechanisms that drive transcriptional programs in cancer cells is key to understanding tumor biology. Herein, we present matched transcriptome (scRNA-seq) and chromatin accessibility (scATAC-seq) profiles at single-cell resolution from human ovarian and endometrial tumors processed immediately following surgical resection. This dataset reveals the complex cellular heterogeneity of these tumors and enabled us to quantitatively link variation in chromatin accessibility to gene expression.

View Article and Find Full Text PDF

Precise genome engineering of living cells has been revolutionized by the introduction of the highly specific and easily programmable properties of the clustered regularly interspaced short palindromic repeats (CRISPR) technology. This has greatly accelerated research into human health and has facilitated the discovery of novel therapeutics. CRISPR-Cas9 is most widely employed for its ability to inactivate or knockout specific genes, but can be also used to introduce subtle site-specific substitutions of DNA sequences that can lead to changes in the amino acid composition of proteins.

View Article and Find Full Text PDF
Article Synopsis
  • The differentiation of embryonic stem cells into specific cell types is influenced by the chromatin structure and gene expression patterns in the genome.
  • To identify the specific enhancers that help progenitor cells turn into pancreatic cells, researchers used a tool called Total Functional Score of Enhancer Elements (TFSEE), which combines various genomic analyses.
  • The study validated TFSEE's effectiveness in finding enhancers compared to other methods and revealed key transcription factors that help maintain the versatility of certain stem cells while they differentiate into pancreatic lineages.
View Article and Find Full Text PDF

The regulation of gene expression is a fundamental cellular process and its misregulation is a key component of disease. Enhancers are one of the most salient regulatory elements in the genome and help orchestrate proper spatiotemporal gene expression during development, in homeostasis, and in response to signaling. Notably, molecular aberrations at enhancers, such as translocations and single nucleotide polymorphisms, are emerging as an important source of human variation and susceptibility to disease.

View Article and Find Full Text PDF

Background: Epigenetic regulators are frequently mutated or aberrantly expressed in a variety of cancers, leading to altered transcription states that result in changes in cell identity, behavior, and response to therapy.

Results: To define alterations in epigenetic landscapes in breast cancers, we profiled the distributions of 8 key histone modifications by ChIP-Seq, as well as primary (GRO-seq) and steady state (RNA-Seq) transcriptomes, across 13 distinct cell lines that represent 5 molecular subtypes of breast cancer and immortalized human mammary epithelial cells.

Discussion: Using combinatorial patterns of distinct histone modification signals, we defined subtype-specific chromatin signatures to nominate potential biomarkers.

View Article and Find Full Text PDF

Noncoding transcription is a defining feature of active enhancers, linking transcription factor (TF) binding to the molecular mechanisms controlling gene expression. To determine the relationship between enhancer activity and biological outcomes in breast cancers, we profiled the transcriptomes (using GRO-seq and RNA-seq) and epigenomes (using ChIP-seq) of 11 different human breast cancer cell lines representing five major molecular subtypes of breast cancer, as well as two immortalized ("normal") human breast cell lines. In addition, we developed a robust and unbiased computational pipeline that simultaneously identifies putative subtype-specific enhancers and their cognate TFs by integrating the magnitude of enhancer transcription, TF mRNA expression levels, TF motif -values, and enrichment of H3K4me1 and H3K27ac.

View Article and Find Full Text PDF

Context: The initiation of term and preterm labor is associated with an up-regulated inflammatory response in myometrium; however, the underlying signaling pathways remain incompletely defined.

Objective: To define the regulatory mechanisms that mediate the increased myometrial inflammatory response leading to labor, we investigated the roles of microRNAs (miRNA/miR).

Design And Setting: Human myometrial tissues, isolated smooth muscle cells, and animal models were used to study miR-181a regulation of uterine inflammatory pathways and contractility.

View Article and Find Full Text PDF

Exploiting the dependence of cancer cells on transcription can be used as an effective strategy for targeting aggressive and therapeutically recalcitrant tumors. Wang et al. show that inhibiting transcription using THZ1, a small-molecule inhibitor of cyclin-dependent kinase CDK7, induces apoptotic cell death in triple-negative breast cancers.

View Article and Find Full Text PDF

Inflammation is known to have a paradoxical effect in cancers, in some cases promoting pathogenesis while in others inhibiting pathogenesis, depending on the cellular context. In an effort to answer a number of fundamental questions about two of the major signaling cascades that affect breast tumorigenesis and impact clinical outcome, we examined the genome-wide consequences of treating ERα-positive breast cancer cells with both estrogen and TNFα. Below, we highlight our observations, their biological significance, and how they provide a framework for understanding the molecular basis for integration of proinflammatory and estrogen signaling in breast cancer.

View Article and Find Full Text PDF

The interplay between mitogenic and proinflammatory signaling pathways plays key roles in determining the phenotypes and clinical outcomes of breast cancers. Using GRO-seq in MCF-7 cells, we defined the immediate transcriptional effects of crosstalk between estradiol (E2) and TNFα, identifying a large set of target genes whose expression is rapidly altered with combined E2 + TNFα treatment, but not with either agent alone. The pleiotropic effects on gene transcription in response to E2 + TNFα are orchestrated by extensive remodeling of the ERα enhancer landscape in an NF-κB- and FoxA1-dependent manner.

View Article and Find Full Text PDF

Setleis Syndrome (OMIM ID: 227260) is a rare autosomal recessive disease characterized by abnormal facial development. Recently, we have reported that two nonsense mutations (c.486C>T [Q119X] and c.

View Article and Find Full Text PDF

Twist1 and Twist2 are highly conserved members of the Twist subfamily of bHLH proteins responsible for the transcriptional regulation of the developmental programs in mesenchymal cell lineages. The regulation of such processes requires that Twist1 and Twist2 function as molecular switches to activate and repress target genes by employing several direct and indirect mechanisms. Modes of action by these proteins include direct DNA binding to conserved E-box sequences and recruitment of coactivators or repressors, sequestration of E-protein modulators, and interruption of proper activator/repressor function through protein-protein interactions.

View Article and Find Full Text PDF

The focal facial dermal dysplasias (FFDDs) are a group of inherited developmental disorders in which the characteristic diagnostic feature is bitemporal scar-like lesions that resemble forceps marks. To date, the genetic defects underlying these ectodermal dysplasias have not been determined. To identify the gene defect causing autosomal-recessive Setleis syndrome (type III FFDD), homozygosity mapping was performed with genomic DNAs from five affected individuals and 26 members of the consanguineous Puerto Rican (PR) family originally described by Setleis and colleagues.

View Article and Find Full Text PDF