Publications by authors named "Hector H Valdivia"

During exercise or stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor (β-AR) activation, resulting in phosphorylation of the cardiac ryanodine receptor (RyR2). Three RyR2 phosphorylation sites have taken prominence in excitation-contraction coupling: S2808 and S2030 are described as protein kinase A specific and S2814 as a Ca/calmodulin kinase type-2-specific site. To examine the contribution of these phosphosites to Ca signalling, we generated double knock-in (DKI) mice in which Ser2808 and Ser2814 phosphorylation sites have both been replaced by alanine (RyR2-S2808A/S2814A).

View Article and Find Full Text PDF

In polymicrobial sepsis, the extracellular histones, mainly released from activated neutrophils, significantly contribute to cardiac dysfunction (septic cardiomyopathy), as demonstrated in our previous studies using Echo-Doppler measurements. This study aims to elucidate the roles of extracellular histones and their interactions with Toll-like receptors (TLRs) in cardiac dysfunction. Through ex vivo assessments of ECG, left ventricle (LV) function parameters, and in vivo Echo-Doppler studies in mice perfused with extracellular histones, we aim to provide comprehensive insights into the mechanisms underlying sepsis-induced cardiac dysfunction.

View Article and Find Full Text PDF

Background: Ryanodine receptor 2 (RyR2) is one of the first substrates undergoing phosphorylation upon catecholaminergic stimulation. Yet, the role of RyR2 phosphorylation in the adrenergic response remains debated. To date, three residues in RyR2 are known to undergo phosphorylation upon adrenergic stimulation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored how type II ryanodine receptors (RyR2) respond to phosphorylation, highlighting its role in structural changes.
  • Using the β-agonist isoproterenol and specific mouse mutations, they measured dyad lengths and RyR2 distribution via advanced imaging techniques.
  • The study found that certain mutations affected dyad size and tetramer organization, revealing a connection between the phosphorylation state of RyR2 and its structural behavior in response to stimulation.
View Article and Find Full Text PDF

Calcins are a group of scorpion toxin peptides specifically binding to ryanodine receptors (RyRs) with high affinity, and have the ability to activate and stabilize RyR in a long-lasting subconductance state. Five newly calcins synthesized compounds exhibit typical structural characteristics of a specific family through chemical synthesis and virtual analysis. As the calcins from the same species, Petersiicalcin1 and Petersiicalcin2, Jendekicalcin2 and Jendekicalcin3, have only one residue difference.

View Article and Find Full Text PDF

Calcin is a group ligand with high affinity and specificity for the ryanodine receptors (RyRs). Little is known about the effect of its acidic residues on the spacial structure as well as the interaction with RyRs. We screened the opicalcin1 acidic mutants and investigated the effect of mutation on activity.

View Article and Find Full Text PDF

Background: Reducing Ca content in the sarcoplasmic reticulum (SR) through ryanodine receptors (RyRs) by calcin is a potential intervention strategy for the SR Ca overload triggered by β-adrenergic stress in acute heart diseases.

Methods: OpiCal-PEG-PLGA nanomicelles were prepared by thin film dispersion, of which the antagonistic effects were observed using an acute heart failure model induced by epinephrine and caffeine in mice. In addition, cardiac targeting, self-stability as well as biotoxicity were determined.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs.

View Article and Find Full Text PDF

Unlabelled: We have previously demonstrated that type II ryanodine receptors (RyR2) tetramers can be rapidly rearranged in response to a phosphorylation cocktail. The cocktail modified downstream targets indiscriminately making it impossible to determine whether phosphorylation of RyR2 was an essential element of the response. We therefore used the β-agonist isoproterenol and mice with one of the homozygous mutations, S2030A , S2808A , S2814A , or S2814D , to address this question and to elucidate the role of these clinically relevant mutations.

View Article and Find Full Text PDF

Calcins are peptides from scorpion venom with the unique ability to cross cell membranes, gaining access to intracellular targets. Ryanodine Receptors (RyR) are intracellular ion channels that control release of Ca from the endoplasmic and sarcoplasmic reticulum. Calcins target RyRs and induce long-lived subconductance states, whereby single-channel currents are decreased.

View Article and Find Full Text PDF

Ryanodine receptor 2 (RyR2) is an ion channel in the heart responsible for releasing into the cytosol most of the Ca required for contraction. Proper regulation of RyR2 is critical, as highlighted by the association between channel dysfunction and cardiac arrhythmia. Lower RyR2 expression is also observed in some forms of heart disease; however, there is limited information on the impact of this change on excitation-contraction (e-c) coupling, Ca-dependent arrhythmias, and cardiac performance.

View Article and Find Full Text PDF

The atrial myocardium demonstrates the highly heterogeneous organization of the transversal-axial tubule system (TATS), although its anatomical distribution and region-specific impact on Ca dynamics remain unknown. Here, we developed a novel method for high-resolution confocal imaging of TATS in intact live mouse atrial myocardium and applied a custom-developed MATLAB-based computational algorithm for the automated analysis of TATS integrity. We observed a twofold higher ( < 0.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is a lethal genetic disease causing arrhythmias and sudden cardiac death in children and young adults and is linked to mutations in the cardiac ryanodine receptor (RyR2). The effects of CPVT1 mutations on RyR2 ion-channel function are often investigated using purified recombinant RyR2 channels homozygous for the mutation. However, CPVT1 patients are heterozygous for the disease, so this approach does not reveal the true changes to RyR2 function across the entire RyR2 population of channels in the heart.

View Article and Find Full Text PDF

Sorcin is a calcium-binding protein involved in maintaining endoplasmic reticulum (ER) Ca stores. We have previously shown that overexpressing sorcin under the rat insulin promoter was protective against high-fat diet-induced pancreatic beta-cell dysfunction in vivo. Activating transcription factor 6 (ATF6) is a key mediator of the unfolded protein response (UPR) that provides cellular protection during the progression of ER stress.

View Article and Find Full Text PDF

Autonomous Ca/calmodulin-dependent protein kinase II (CaMKII) activation induces abnormal diastolic Ca leak, which leads to triggered arrhythmias in a wide range of cardiovascular diseases, including diabetic cardiomyopathy. In hyperglycemia, Ca handling alterations can be aggravated under stress conditions via the β-adrenergic signaling pathway, which also involves CaMKII activation. However, little is known about intracellular Ca handling disturbances under β-adrenergic stimulation in cardiomyocytes of the prediabetic metabolic syndrome (MetS) model with obesity, and the participation of CaMKII in these alterations.

View Article and Find Full Text PDF

Background Atrial fibrillation (AF) is a comorbidity associated with heart failure and catecholaminergic polymorphic ventricular tachycardia. Despite the Ca-dependent nature of both of these pathologies, AF often responds to Na channel blockers. We investigated how targeting interdependent Na/Ca dysregulation might prevent focal activity and control AF.

View Article and Find Full Text PDF

Background: Plakophilin-2 (PKP2) is classically defined as a desmosomal protein. Mutations in PKP2 associate with most cases of gene-positive arrhythmogenic right ventricular cardiomyopathy. A better understanding of PKP2 cardiac biology can help elucidate the mechanisms underlying arrhythmic and cardiomyopathic events consequent to PKP2 deficiency.

View Article and Find Full Text PDF

Risk for Atrial Fibrillation (AF), the most common human arrhythmia, has a major genetic component. The T-box transcription factor TBX5 influences human AF risk, and adult-specific -mutant mice demonstrate spontaneous AF. We report that TBX5 is critical for cellular Ca homeostasis, providing a molecular mechanism underlying the genetic implication of TBX5 in AF.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is triggered mainly by mutations in genes encoding sarcomeric proteins, but a significant proportion of patients lack a genetic diagnosis. We identified a novel mutation in the ryanodine receptor 2, RyR2-P1124L, in a patient from a genotype-negative HCM cohort. The aim of this study was to determine whether RyR2-P1124L triggers functional and structural alterations in isolated RyR2 channels and whole hearts.

View Article and Find Full Text PDF

During physical exercise or stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor (β-AR) activation, resulting in protein kinase A (PKA)-mediated phosphorylation of the cardiac ryanodine receptor RyR2. PKA-dependent "hyperphosphorylation" of the RyR2 channel has been proposed as a major impairment that contributes to progression of heart failure. However, the sites of PKA phosphorylation and their phosphorylation status in cardiac diseases are not well defined.

View Article and Find Full Text PDF

Background: The mechanisms underlying spontaneous atrial fibrillation (AF) associated with atrial ischemia/infarction are incompletely elucidated. Here, we investigate the mechanisms underlying spontaneous AF in an ovine model of left atrial myocardial infarction (LAMI).

Methods And Results: LAMI was created by ligating the atrial branch of the left anterior descending coronary artery.

View Article and Find Full Text PDF