Background: Reliable and effective label-free quantification (LFQ) analyses are dependent not only on the method of data acquisition in the mass spectrometer, but also on the downstream data processing, including software tools, query database, data normalization and imputation. In non-human primates (NHP), LFQ is challenging because the query databases for NHP are limited since the genomes of these species are not comprehensively annotated. This invariably results in limited discovery of proteins and associated Post Translational Modifications (PTMs) and a higher fraction of missing data points.
View Article and Find Full Text PDFThe hybridization capture of chromatin-associated proteins for proteomics (HyCCAPP) technology was initially developed to uncover novel DNA-protein interactions in yeast. It allows analysis of a target region of interest without the need for prior knowledge about likely proteins bound to the target region. This, in theory, allows HyCCAPP to be used to analyze any genomic region of interest, and it provides sufficient flexibility to work in different cell systems.
View Article and Find Full Text PDFBackground: Sensorineural hearing loss (SNHL) is a common form of hearing loss that can be inherited or triggered by environmental insults; auditory neuropathy spectrum disorder (ANSD) is a SNHL subtype with unique diagnostic criteria. The genetic factors associated with these impairments are vast and diverse, but causal genetic factors are rarely characterized.
Methods: A family dyad, both cochlear implant recipients, presented with a hearing history of bilateral, progressive SNHL, and ANSD.
Currently available methods for interrogating DNA-protein interactions at individual genomic loci have significant limitations, and make it difficult to work with unmodified cells or examine single-copy regions without specific antibodies. In this study, we describe a physiological application of the Hybridization Capture of Chromatin-Associated Proteins for Proteomics (HyCCAPP) methodology we have developed. Both novel and known locus-specific DNA-protein interactions were identified at the ENO2 and GAL1 promoter regions of Saccharomyces cerevisiae, and revealed subgroups of proteins present in significantly different levels at the loci in cells grown on glucose versus galactose as the carbon source.
View Article and Find Full Text PDFDNA-protein interactions play critical roles in the control of genome expression and other fundamental processes. An essential element in understanding how these systems function is to identify their molecular components. We present here a novel strategy, Hybridization Capture of Chromatin Associated Proteins for Proteomics (HyCCAPP), to identify proteins that are interacting with any given region of the genome.
View Article and Find Full Text PDFDNA-protein interactions are central to gene expression and chromatin regulation and have become one of the main focus areas of the ENCODE consortium. Advances in mass spectrometry and associated technologies have facilitated studies of these interactions, revealing many novel DNA-interacting proteins and histone posttranslational modifications. Proteins interacting at a single locus or at multiple loci have been targeted in these recent studies, each requiring a separate analytical strategy for isolation and analysis of DNA-protein interactions.
View Article and Find Full Text PDFMatrix metalloproteinase 7 (MMP7), a metallohydrolase involved in the development of several cancers, is downregulated in the Apc(Min/+) colon cancer mouse model following sulindac treatment. To determine whether this effect is relevant to the human condition, HT-29 human colon cancer cells were treated with sulindac and its metabolites, and compared to results obtained from in vivo mouse studies. The expression of MMP7 was monitored.
View Article and Find Full Text PDFBackground: Fas, a member of the tumor necrosis family, is responsible for initiating the apoptotic pathway when bound to its ligand, Fas-L. Defects in the Fas-mediated apoptotic pathway have been reported in colorectal cancer.
Methodology/principal Findings: In the present study, a variant of the Apc(Min/+) mouse, a model for the human condition, Familial Adenomatous Polyposis (FAP), was generated with an additional deficiency of Fas (Apc(Min/+)/Fas(lpr)) by cross-breeding Apc(Min/+) mice with Fas deficient (Fas(lpr)) mice.
About one fourth of people diagnosed with kidney cancer in 2007, are expected to die of this disease within 5 years from the date of diagnosis. Recent years have produced novel drugs, some with FDA approval, and many in clinical trials, all showing very discrete results. Failure in finding effective treatments to improve survival with drugs mainly targeting VEGF and its downstream effectors, urges to shift the drug development targets to other unexploited pathways shown to be also involved in renal cancer.
View Article and Find Full Text PDFNon-steroidal anti-inflammatory drugs (NSAIDs) have shown potential as chemopreventive agents against cancer formation, especially colorectal cancers. However, the mechanisms by which these drugs act are not fully understood. In this study, Apc(Min/+) mice, a genetic model of human familial adenomatous polyposis, were treated with sulindac, and these mice demonstrated tumor reduction of >80%, consistent with previous reports.
View Article and Find Full Text PDF