Publications by authors named "Hector Gonzalez-Pardo"

This systematic review explored the impact of maternal immune activation (MIA) on learning and memory behavior in offspring, with a particular focus on sexual dimorphism. We analyzed 20 experimental studies involving rodent models (rats and mice) exposed to either lipopolysaccharide (LPS) or POLY I:C during gestation following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our findings reveal that most studies report a detrimental impact of MIA on the learning and memory performance of offspring, highlighting the significant role of prenatal environmental factors in neurodevelopment.

View Article and Find Full Text PDF

Prolonged consumption of diets high in saturated fat and sugar has been related to obesity and overweight, which in turn are linked to cognitive impairment in both humans and rodents. This has become a current issue, especially in children and adolescents, because these stages are crucial to neurodevelopmental processes and programming of adult behavior. To evaluate the effects of gestational and early exposure to an obesogenic diet, three groups with different dietary patterns were established: high-fat and high-sucrose diet (HFS), standard diet (SD), and a dietary shift from a high-fat, high-sucrose diet to a standard diet after weaning (R).

View Article and Find Full Text PDF

Background: Exposure to early life stress (ELS) and maternal consumption of a high-fat and high-sugar diet can have detrimental effects on adult emotional responses. The microbiota and gut-brain axis have been proposed as playing a mediating role in the regulation of stress and emotion.

Method: Young male rats were exposed to maternal separation (MS) together with maternal and postnatal consumption of a HFS diet (45%kcal saturated fat, 17%kcal sucrose).

View Article and Find Full Text PDF

Prolonged daily intake of Western-type diet rich in saturated fats and sugars, and exposure to early life stress have been independently linked to impaired neurodevelopment and behaviour in animal models. However, sex-specific effects of both environmental factors combined on spatial learning and memory, behavioural flexibility, and brain oxidative capacity have still not been addressed. The current study aimed to evaluate the impact of maternal and postnatal exposure to a high-fat and high-sugar diet (HFS), and exposure to early life stress by maternal separation in adult male and female Wistar rats.

View Article and Find Full Text PDF

Gender is considered as a pivotal determinant of mental health. Indeed, several psychiatric disorders such as anxiety and depression are more common and persistent in women than in men. In the past two decades, impaired brain energy metabolism has been highlighted as a risk factor for the development of these psychiatric disorders.

View Article and Find Full Text PDF

Introduction: The neuropeptide Y (NPY) is broadly distributed in the central nervous system (CNS), and it has been related to neuroprotective functions. NPY seems to be an important component to counteract brain damage and cognitive impairment mediated by drugs of abuse and neurodegenerative diseases, and both NPY and its Y receptor (YR) are highly expressed in the hippocampus, critical for learning and memory. We have recently demonstrated its influence on cognitive functions; however, the specific mechanism and involved brain regions where NPY modulates spatial memory by acting on YR remain unclear.

View Article and Find Full Text PDF

The Western diet (WD) pattern characterized by high daily intake of saturated fats and refined carbohydrates often leads to obesity and overweight, and it has been linked to cognitive impairment and emotional disorders in both animal models and humans. This dietary pattern alters the composition of gut microbiota, influencing brain function by different mechanisms involving the gut-brain axis. In addition, long-term exposure to highly palatable foods typical of WD could induce addictive-like eating behaviors and hypothalamic-pituitary-adrenal (HPA) axis dysregulation associated with chronic stress, anxiety, and depression.

View Article and Find Full Text PDF

Neuropeptide Y (NPY) is highly abundant in the brain and is released as a co-transmitter with plasticity-related neurotransmitters such as glutamate, GABA and noradrenaline. Functionally, its release is associated with appetite, anxiety, and stress regulation. NPY acting on Y2 receptors (YR), facilitates fear extinction, suggesting a role in associative memory.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how early life stress affects male and female rats differently, particularly focusing on prolonged maternal separation as a model for adverse experiences.
  • Findings show that female rats had significantly reduced mitochondrial energy metabolism compared to males, especially in key brain areas like the prefrontal cortex and hippocampus.
  • Additionally, there were notable differences in neurotransmitter turnover (serotonin, dopamine, and norepinephrine) and inflammatory markers between the sexes, highlighting the complex impacts of early stress based on sex and specific brain regions.
View Article and Find Full Text PDF

Early life stress is associated with long-term and pervasive adverse effects on neuroendocrine development, affecting normal cognitive and emotional development. Experimental manipulations like environmental enrichment (EE) may potentially reverse the effects of early life stress induced by maternal separation (MS) paradigm in rodents. However, the functional brain networks involved in the effects of EE after prolonged exposure to MS have not yet been investigated.

View Article and Find Full Text PDF

Background: Exposure to maternal separation (MS) in rodents may have long-lasting consequences for the structure and function of several brain regions, eventually associated with alterations in cognition and emotion later in life. Post-weaning environmental enrichment (EE) has been reported to ameliorate the detrimental effects of exposure to early life stress mainly in the hippocampus.

Method: In vivo magnetic resonance imaging (MRI) was applied to evaluate possible volumetric changes in the dorsal and ventral hippocampus, the medial prefrontal cortex and the dorsal striatum of 90-day-old male rats after daily MS for 240 min from postnatal days 2-21.

View Article and Find Full Text PDF

Prenatal and perinatal alcohol exposure caused by maternal alcohol intake during gestation and lactation periods can have long-lasting detrimental effects on the brain development and behaviour of offspring. Children diagnosed with Foetal Alcohol Spectrum Disorders (FASD) display a wide range of cognitive, emotional and motor deficits, together with characteristic morphological abnormalities. Maternal alcohol binge drinking is particularly harmful for foetal and early postnatal brain development, as it involves exposure to high levels of alcohol over short periods of time.

View Article and Find Full Text PDF

Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method.

View Article and Find Full Text PDF

Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training.

View Article and Find Full Text PDF

Several studies have reported the brain regions involved in response learning. However, there is discrepancy regarding the lighting conditions in the experimental setting (i.e.

View Article and Find Full Text PDF

Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry.

View Article and Find Full Text PDF

Background: Epigenetics is changing the widely accepted linear conception of genome function by explaining how environmental and psychological factors regulate the activity of our genome without involving changes in the DNA sequence. Research has identified epigenetic mechanisms mediating between environmental and psychological factors that contribute to normal and abnormal behavioral development.

Method: the emerging field of epigenetics as related to psychology is reviewed.

View Article and Find Full Text PDF

Learning of arbitrary stimulus-response associations is an adaptive behavior essential for species survival in an ever-changing environment. Particular subdivisions of the striatum have been shown to be critical for both motor-response learning and reversal learning. However, recent evidence suggests that different cortical and subcortical brain regions may be involved in response learning, a kind of learning more complex than previously thought.

View Article and Find Full Text PDF

Aging is characterized by decline in metabolic function and insulin resistance, and both seem to be in the basis of neurodegenerative diseases and cognitive dysfunction. Estrogens prevent age-related changes, and phytoestrogens influence learning and memory. Our hypothesis was that estradiol and genistein, using rapid-action mechanisms, are able to modify insulin sensitivity, process of learning, and spatial memory.

View Article and Find Full Text PDF

We tested the hypothesis that adolescent Sprague-Dawley females may be more resistant than males to display impulsive behavior and lower prefrontal cortex thickness after mother-infant separation (MS). Starting at postnatal day 2 (P2), the MS group was separated 6 hr/day and the early handled (EH) group 15 min/day for 10 days, and another group was standard facility reared (SFR). Subjects were examined for novel open-field activity (P28), light-dark apparatus (P29), familiar open-field (P30) and frontal cortical thickness.

View Article and Find Full Text PDF

The juvenile brain undergoes marked maturational changes accompanied by major sex hormone changes. In particular, sex differences in neural substrates could underlie male-specific dysfunction in behavioral responses related to the prefrontal cortex. Sex differences in regional metabolic capacity of the cerebral cortex were investigated in juvenile Sprague-Dawley rats.

View Article and Find Full Text PDF

The effects of antidepressant drugs on memory have been somewhat ignored, having been considered a mere side effect of these compounds. However, the memory impairment caused by several antidepressants could be considered to form part of their therapeutic effects. Amitriptyline is currently one of the most prescribed tricyclic antidepressants, and exerts marked anticholinergic and antihistaminergic effects.

View Article and Find Full Text PDF

The aim of the present study was to provide further evidence on the role of particular subdivisions of the mammillary bodies, anterior thalamus and dorsal hippocampus to contextual and auditory fear conditioning. We used c-Fos expression as a marker of neuronal activation to compare rats that received tone-footshock pairings in a distinctive context (conditioned group) to rats being exposed to both the context and the auditory CS without receiving footshocks (unconditioned group), and naïve rats that were only handled. Fos immunoreactivity was significantly increased only in the anterodorsal thalamic nucleus and the lateral mammillary nucleus of the conditioned group.

View Article and Find Full Text PDF

The involvement of the basolateral and the medial amygdala in fear conditioning was evaluated using different markers of neuronal activation. The method described here is a combination of cytochrome oxidase (CO) histochemistry and c-Fos immunocytochemistry on fresh frozen brain sections. Freezing behavior was used as an index of auditory and contextual fear conditioning.

View Article and Find Full Text PDF