NAD is a coenzyme central to metabolism that also serves as a 5'-terminal cap for bacterial and eukaryotic transcripts. Thermal degradation of NAD can generate nicotinamide and ADP-ribose (ADPR). Here, we use LC-MS/MS and NAD captureSeq to detect and identify NAD-RNAs in the thermophilic model archaeon Sulfolobus acidocaldarius and in the halophilic mesophile Haloferax volcanii.
View Article and Find Full Text PDFNicotinamide adenosine dinucleotide (NAD) has been found to be covalently attached to the 5' ends of specific RNAs in many different organisms, but the physiological consequences of this modification are largely unknown. Here, we report the occurrence of several NAD-RNAs in the opportunistic pathogen Most prominently, RNAIII, a central quorum-sensing regulator of this bacterium's physiology, was found to be 5' NAD capped in a range from 10 to 35%. NAD incorporation efficiency into RNAIII was found to depend on the -1 position of the P3 promoter.
View Article and Find Full Text PDF