Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites.
View Article and Find Full Text PDFIn the mouse visual system, multiple types of retinal ganglion cells (RGCs) each encode distinct features of the visual space. A clear understanding of how this information is parsed in their downstream target, the dorsal lateral geniculate nucleus (dLGN), remains elusive. Here, we characterized retinogeniculate connectivity in Cart-IRES2-Cre-D and BD-CreER2 mice, which labels subsets of on-off direction-selective ganglion cells (ooDSGCs) tuned to the vertical directions and to only ventral motion, respectively.
View Article and Find Full Text PDFExperience-dependent modulation of neuronal responses is a key attribute in sensory processing. In the mammalian retina, the On-Off direction-selective ganglion cell (DSGC) is well known for its robust direction selectivity. However, how the On-Off DSGC light responsiveness dynamically adjusts to the changing visual environment is underexplored.
View Article and Find Full Text PDFSpatially distributed excitation and inhibition collectively shape a visual neuron's receptive field (RF) properties. In the direction-selective circuit of the mammalian retina, the role of strong null-direction inhibition of On-Off direction-selective ganglion cells (On-Off DSGCs) on their direction selectivity is well-studied. However, how excitatory inputs influence the On-Off DSGC's visual response is underexplored.
View Article and Find Full Text PDFReal-world bioelectronics applications, including drug delivery systems, biosensing and electrical modulation of tissues and organs, largely require biointerfaces at the macroscopic level. However, traditional macroscale bioelectronic electrodes usually exhibit invasive or power-inefficient architectures, inability to form uniform and subcellular interfaces, or faradaic reactions at electrode surfaces. Here, we develop a micelle-enabled self-assembly approach for a binder-free and carbon-based monolithic device, aimed at large-scale bioelectronic interfaces.
View Article and Find Full Text PDFAdvances in microscopy and molecular strategies have allowed researchers to gain insight into the intricate organization of the mammalian brain and the roles that neurons play in processing information. Despite vast progress, therapeutic strategies for neurological disorders remain limited, owing to a lack of biomaterials for sensing and modulating neuronal signalling in vivo. Therefore, there is a pressing need for developing material-based tools that can form seamless biointerfaces and interrogate the brain with unprecedented resolution.
View Article and Find Full Text PDFEngineered silicon-based materials can display photoelectric and photothermal responses under light illumination, which may lead to further innovations at the silicon-biology interfaces. Silicon nanowires have small radial dimensions, promising as highly localized cellular modulators, however the single crystalline form typically has limited photothermal efficacy due to the poor light absorption and fast heat dissipation. In this work, we report strategies to improve the photothermal response from silicon nanowires by introducing nanoscale textures on the surface and in the bulk.
View Article and Find Full Text PDFSemiconductor nanomaterials are emerging as a class of materials that can push the fundamental limits of current biomedical devices and possibly revolutionize healthcare. In particular, silicon nanostructures have been proven to be attractive systems for integrating nanoscale machines in biology because of their tunable electronic and optical properties, low cytotoxicity, and the vast microfabrication toolbox available for silicon. Studies have demonstrated that the implementation of next-generation silicon-based biomedical devices can benefit from the rational design of their nanoscale components.
View Article and Find Full Text PDFDetecting visual features in the environment, such as motion direction, is crucial for survival. The circuit mechanisms that give rise to direction selectivity in a major visual center, the superior colliculus (SC), are entirely unknown. We optogenetically isolate the retinal inputs that individual direction-selective SC neurons receive and find that they are already selective as a result of precisely converging inputs from similarly tuned retinal ganglion cells.
View Article and Find Full Text PDFDirection selectivity of direction-selective ganglion cells (DSGCs) in the retina results from patterned excitatory and inhibitory inputs onto DSGCs during motion stimuli. The inhibitory inputs onto DSGCs are directionally tuned to the antipreferred (null) direction and therefore potently suppress spiking during motion in the null direction. However, whether direction-selective inhibition is indispensable for direction selectivity is unclear.
View Article and Find Full Text PDF