This paper presents two algorithms for the large-scale automatic detection and instance segmentation of potential archaeological mounds on historical maps. Historical maps present a unique source of information for the reconstruction of ancient landscapes. The last 100 years have seen unprecedented landscape modifications with the introduction and large-scale implementation of mechanised agriculture, channel-based irrigation schemes, and urban expansion to name but a few.
View Article and Find Full Text PDFHistorical maps present a unique depiction of past landscapes, providing evidence for a wide range of information such as settlement distribution, past land use, natural resources, transport networks, toponymy and other natural and cultural data within an explicitly spatial context. Maps produced before the expansion of large-scale mechanized agriculture reflect a landscape that is lost today. Of particular interest to us is the great quantity of archaeologically relevant information that these maps recorded, both deliberately and incidentally.
View Article and Find Full Text PDFThis paper presents an innovative multisensor, multitemporal machine-learning approach using remote sensing big data for the detection of archaeological mounds in Cholistan (Pakistan). The Cholistan Desert presents one of the largest concentrations of Indus Civilization sites (from 3300 to 1500 BC). Cholistan has figured prominently in theories about changes in water availability, the rise and decline of the Indus Civilization, and the transformation of fertile monsoonal alluvial plains into an extremely arid margin.
View Article and Find Full Text PDFAnimal mobility is a common strategy to overcome scarcity of food and the related over-grazing of pastures. It is also essential to reduce the inbreeding rate of animal populations, which is known to have a negative impact on fertility and productivity. The present paper shows the geographic range of sheep provisioning in different phases of occupation at the Iron Age site of Turó de la Font de la Canya (7th to 3rd centuries BC).
View Article and Find Full Text PDFMorphological analysis of landforms has traditionally relied on the interpretation of imagery. Although imagery provides a natural view of an area of interest (AOI) images are largely hindered by the environmental conditions at the time of image acquisition, the quality of the image and, mainly, the lack of topographical information, which is an essential factor for a correct understanding of the AOI's geomorphology. More recently digital surface models (DSMs) have been incorporated into the analytical toolbox of geomorphologists.
View Article and Find Full Text PDF