Objective: After a concussion, some patients develop persistent post-concussion symptoms, which interferes with functioning in daily life. A biopsychosocial explanation for the development and continuation of persistent post-concussion symptoms is the fear avoidance model (FAM). This study aimed to investigate the effectiveness and feasibility of an individual 14-week exposure therapy for patients with persistent symptoms after concussion.
View Article and Find Full Text PDFThe P3b is a prominent event-related potential (ERP) with maximal amplitude between 250 ms and 500 ms after the onset of a rare target stimulus within a sequence of standard non-target stimuli (oddball paradigm). Several studies found reduced P3b amplitudes in patients with schizophrenia compared to neurotypicals. Our work and the literature suggest that temporal imprecision may play a large pathophysiological role in schizophrenia.
View Article and Find Full Text PDFDuring visual imagination, a perceptual representation is activated in the absence of sensory input. This is sometimes described as seeing with the mind's eye. A number of physiological studies indicate that the brain uses more or less the same neural resources for visual perception of sensory information and visual imagination.
View Article and Find Full Text PDFBackground: The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1.
View Article and Find Full Text PDFMagnetoencephalography (MEG) and electroencephalography (EEG) are widely employed techniques for the measurement of neural activity with exceptional temporal resolution. Modeling the neural sources underlying these signals is of high interest for both neuroscience research and pathology. The method of Alternating Projection (AP) was recently shown to outperform the well-established recursively applied and projected multiple signal classification (RAP-MUSIC) algorithm.
View Article and Find Full Text PDF"Translational medicine" has been a buzzword for over two decades. The concept was intended to be lofty, to reflect a new "bench-to-bedside" approach to basic and clinical research that would bridge fields, close gaps, accelerate innovation, and shorten the time and effort it takes to bring novel technologies from basic discovery to clinical application. Has this approach been successful and lived up to its promise? Despite incredible scientific advances and innovations developed within academia, successful clinical translation into real-world solutions has been difficult.
View Article and Find Full Text PDFIntroduction: During observation of the ambiguous Necker cube, our perception suddenly reverses between two about equally possible 3D interpretations. During passive observation, perceptual reversals seem to be sudden and spontaneous. A number of theoretical approaches postulate destabilization of neural representations as a pre-condition for reversals of ambiguous figures.
View Article and Find Full Text PDFMagneto- and electroencephalography (M/EEG) are widespread techniques to measure neural activity at a high temporal resolution but low spatial resolution. Locating the neural sources underlying the M/EEG poses an inverse problem, which is ill-posed. We developed a new method based on Recursive Application of Multiple Signal Classification (MUSIC).
View Article and Find Full Text PDFMutations in the gene cause a collection of diseases known as laminopathies, including muscular dystrophies, lipodystrophies, and early-onset aging syndromes. The gene encodes A-type lamins, lamins A/C, intermediate filaments that form a meshwork underlying the inner nuclear membrane. Lamins have a conserved domain structure consisting of a head, coiled-coil rod, and C-terminal tail domain possessing an Ig-like fold.
View Article and Find Full Text PDFStructured Illumination Microscopy, SIM, is one of the most powerful optical imaging methods available to visualize biological environments at subcellular resolution. Its limitations stem from a difficulty of imaging in multiple color channels at once, which reduces imaging speed. Furthermore, there is substantial experimental complexity in setting up SIM systems, preventing a widespread adoption.
View Article and Find Full Text PDFOne of the great challenges in psychiatry is finding reliable biomarkers that may allow for more accurate diagnosis and treatment of patients. Neural variability received increasing attention in recent years as a potential biomarker. In the present explorative study we investigated temporal variability in visually evoked EEG activity in a cohort of 16 adult participants with Asperger Syndrome (AS) and 19 neurotypical (NT) controls.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF), a severe and deadly form of lung fibrosis, is widely regarded as a disease of aging. We previously demonstrated that aged mice with persistent lung fibrosis and IPF lung myofibroblasts exhibit deficient Nrf2-mediated antioxidant responses. Tecfidera is an orally administered FDA-approved drug for the treatment of multiple sclerosis, where the active pharmaceutical ingredient is dimethyl fumarate (DMF), an active Nrf2 activator.
View Article and Find Full Text PDFThis paper describes a microscale fibroplasia and contraction model that is based on fibrin-embedded lung fibroblasts and provides a convenient visual readout of fibrosis. Cell-laden fibrin microgel drops are formed by aqueous two-phase microprinting. The cells deposit extracellular matrix (ECM) molecules such as collagen while fibrin is gradually degraded.
View Article and Find Full Text PDFDiet is one of the most common traits used to organize species of animals into niches. For ruminant herbivores, the breadth and uniqueness of their dietary niche are placed on a spectrum from browsers that consume woody (i.e.
View Article and Find Full Text PDFThe electroencephalography (EEG) is a well-established non-invasive method in neuroscientific research and clinical diagnostics. It provides a high temporal but low spatial resolution of brain activity. To gain insight about the spatial dynamics of the EEG, one has to solve the inverse problem, i.
View Article and Find Full Text PDFFibrillar amyloids exhibit a fascinating range of mechanical, optical, and electronic properties originating from their characteristic β-sheet-rich structure. Harnessing these functionalities in practical applications has so far been hampered by a limited ability to control the amyloid self-assembly process at the macroscopic scale. Here, we use core-shell electrospinning with microconfinement to assemble amyloid-hybrid fibers, consisting of densely aggregated fibrillar amyloids stabilized by a polymer shell.
View Article and Find Full Text PDFThis paper describes printing of microscale fibroblast-laden matrices using an aqueous two-phase approach that controls thrombin-mediated enzymatic crosslinking of fibrin. Optimization of aqueous two-phase formulations enabled polymerization of consistent sub-microliter volumes of cell-laden fibrin. When plasminogen was added to these micro-scaffolds, the primary normal human lung fibroblasts converted it to plasmin, triggering gradual degradation of the fibrin.
View Article and Find Full Text PDFThe nutritional characteristics of food resources play an important role in the foraging behavior of animals and can provide information valuable to their conservation and management. We examined the nutritional ecology of wild water buffalo (; hereafter "buffalo") in the Koshi Tappu Wildlife Reserve of Nepal during autumn using a multidimensional nutritional niche framework. We identified 54 plant species as being foraged by buffalo.
View Article and Find Full Text PDFThe information available through our senses is noisy, incomplete, and ambiguous. Our perceptual systems have to resolve this ambiguity to construct stable and reliable percepts. Previous EEG studies found large amplitude differences in two event-related potential (ERP) components 200 and 400 ms after stimulus onset when comparing ambiguous with disambiguated visual information ("ERP Ambiguity Effects").
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
July 2020
Goblet cell metaplasia (GCM) and mucin overproduction are a hallmark of chronic rhinosinusitis (CRS) and chronic obstructive pulmonary disease (COPD). In the airways, cigarette smoke (CS) induces activation of the epidermal growth factor receptor (EGFR) leading to GCM and overexpression of the gel-forming mucin MUC5AC. Although previous studies have demonstrated that a membrane-bound mucin, MUC1, modulates the activation of CS-induced EGFR, the role of MUC1 in CS-induced GCM and mucin overproduction has not been explored.
View Article and Find Full Text PDFOxidative stress has been associated with a number of human fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Although oxidative stress is associated with both fibrosis and aging, the precise cellular sources(s) of reactive oxygen species (ROS) that contribute to the disease pathogenesis remain poorly understood. NADPH oxidase (Nox) enzymes are an evolutionarily conserved family, where their only known function is the production of ROS.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
May 2020
Idiopathic pulmonary fibrosis (IPF) is a fatal age-associated disease with no cure. Although IPF is widely regarded as a disease of aging, the cellular mechanisms that contribute to this age-associated predilection remain elusive. In this study, we sought to evaluate the consequences of senescence on myofibroblast cell fate and fibrotic responses to lung injury in the context of aging.
View Article and Find Full Text PDFComplex models of the tissue microenvironment, termed microphysiological systems, have enormous potential to transform the process of discovering drugs and disease mechanisms. Such a paradigm shift is urgently needed in acute respiratory distress syndrome (ARDS), an acute lung condition with no successful therapies and a 40% mortality rate. Here, we consider how microphysiological systems could improve understanding of biological mechanisms driving ARDS and ultimately improve the success of therapies in clinical trials.
View Article and Find Full Text PDF