Publications by authors named "Hechun Ye"

We recently characterized a gene-terpene network that is associated with artemisinin biosynthesis in self-pollinated (SP) Artemisia annua, an effective antimalarial plant. We hypothesize that an alteration of gene expression in the network may improve the production of artemisinin and its precursors. In this study, we cloned an isopentenyl pyrophosphate isomerase (IPPI) cDNA, AaIPPI1, from Artemisia annua (Aa).

View Article and Find Full Text PDF

The shikonin derivatives, accumulated in the roots of Arnebia euchroma (Boraginaceae), showed antibacterial, anti-inflammatory, and anti-tumor activities. To explore their possible biosynthesis regulation mechanism, this paper investigated the effects of exogenous methyl jasmonate (MJ) on the biosynthesis of shikonin derivatives in callus cultures of A. euchroma.

View Article and Find Full Text PDF

Amorpha-4,11-diene synthase (ADS) and Cyt P450 monooxygenase (CYP71AV1) in Artemisia annua L. are two key enzymes involved in the biosynthesis of artemisinin. The promoters of ADS and CYP71AV1 contain E-box elements, which are putative binding sites for basic helix-loop-helix (bHLH) transcription factors.

View Article and Find Full Text PDF

Via studying the phenotype, growth curve and secondary metabolites of two kinds of suspension culture cell of Arnebia euchroma, the kinetics parameters of growth and accumulation of shikonin compounds in cell suspension culture of A. euchroma was obtained through simulating and modeling. This Study found that the red high-yielding one was a fine cell line for producing shikonin compounds, and the white low-yielding one may be a mutant.

View Article and Find Full Text PDF

cDNAs encoding Hypericum sampsonii benzophenone synthase (HsBPS) and chalcone synthase (HsCHS) were isolated and functionally characterized. Differential expressions of HsBPS and HsCHS were monitored using quantitative polymerase chain reaction (PCR). In the vegetative stage, HsBPS was highly expressed in the roots; its transcript level was approx.

View Article and Find Full Text PDF

Catharanthus roseus is an important medicinal plant and the sole commercial source of monoterpenoid indole alkaloids (MIA), anticancer compounds. Recently, triterpenoids like ursolic acid and oleanolic acid have also been found in considerable amounts in C. roseus leaf cuticular wax layer.

View Article and Find Full Text PDF

It is well known in the literature that cinnamyl alcohol dehydrogenase (CAD) reduces hydroxycinnamyl aldehydes, such as coumaryl, coniferyl, and sinapyl aldehydes, to their corresponding alcohols in the presence of NADPH, and these alcohols act as the precursors of lignin biosynthesis. Here, we report the isolation of a cDNA encoding an NADP(+)-dependent CAD, designated as AaCAD, from the cDNA library using glandular secretory trichomes of Artemisia annua as the source of mRNA. A phylogenetic analysis indicated that AaCAD was clustered with AtCAD4 and AtCAD5, which were involved in monolignol biosynthesis from Arabidopsis.

View Article and Find Full Text PDF

Biphenyls are unique phytoalexins produced by plants belonging to Pyrinae, a subtribe of the economically important Rosaceae family. The formation of aucuparin, a well-known biphenyl, is induced by yeast extract (YE) in cell cultures of Sorbus aucuparia. However, the molecular mechanism underlying YE-induced activation of biphenyl biosynthesis remains unknown.

View Article and Find Full Text PDF

Artemisinin is an effective antimalarial drug isolated from the medicinal plant Artemisia annua L. Due to its increasing market demand and the low yield in A. annua, there is a great interest in increasing its production.

View Article and Find Full Text PDF

Plant-specific type III polyketide synthase (PKS) produces a variety of plant secondary metabolites with notable structural diversity and biological activity. So far 14 plant-specific type III PKS have been identified according to their enzymatic products, and the corresponding genes have been cloned and characterized. The differences among the various PKS are mainly in their substrate specificities, the number of their condensation reactions, and the type of ring closure of their products.

View Article and Find Full Text PDF

Artemisinin, a sesquiterpene lactone isolated from the Chinese medicinal plant Artemisia annua L., is an effective antimalarial agent, especially for multi-drug resistant and cerebral malaria. To date, A.

View Article and Find Full Text PDF

We report a rapid and simple method for isolating the 5'-end of plant genes from genomic DNA by polymerase chain reaction (PCR) with TATA-box-based degenerate primers (TDPs). The TDPs were specially designed according to the TATA box, which is conserved in the promoter region of most plant genes. The unknown 5'-ends of several genes in different plants were isolated by PCR with gene-specific primers of the known core fragment and the TDPs.

View Article and Find Full Text PDF

Amorpha-4,11-diene synthase (ADS) of Artemisia annua catalyzes the conversion of farnesyl diphosphate into amorpha-4,11-diene, the first committed step in the biosynthesis of the antimalarial drug artemisinin. The promoters of ADS contain two reverse-oriented TTGACC W-box cis-acting elements, which are the proposed binding sites of WRKY transcription factors. A full-length cDNA (AaWRKY1) was isolated from a cDNA library of the glandular secretory trichomes (GSTs) in which artemisinin is synthesized and sequestered.

View Article and Find Full Text PDF

Artemisinin has been proven to be an effective antimalarial compound, especially for chloroquine-resistant and cerebral malaria. However, its biosynthesis pathway is still not completely clear. In order to get new clues about artemisinin biosynthesis, metabolic profiling by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) was applied to compare the secondary metabolites of two Artemisia annua L.

View Article and Find Full Text PDF

This paper provides evidence that salicylic acid (SA) can activate artemisinin biosynthesis in Artemisia annua L. Exogenous application of SA to A. annua leaves was followed by a burst of reactive oxygen species (ROS) and the conversion of dihydroartemisinic acid into artemisinin.

View Article and Find Full Text PDF

Benzalacetone synthase (BAS) is a member of the plant-specific type III PKS superfamily that catalyzes a one-step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce p-hydroxybenzalacetone. In our recent work (Ma et al. in Planta 229(3):457-469, 2008), a three-intron type III PKS gene (PcPKS2) was isolated from Polygonum cuspidatum Sieb.

View Article and Find Full Text PDF

A type III polyketide synthase cDNA and the corresponding gene (PcPKS2) were cloned from Polygonum cuspidatum Sieb. et Zucc. Sequencing results showed that the ORF of PcPKS2 was interrupted by three introns, which was an unexpected finding because all type III PKS genes studied so far contained only one intron at a conserved site in flowering plants, except for an Antirrhinum majus chalcone synthase gene.

View Article and Find Full Text PDF

Artemisinin,a new and a very potent antimalarial drug, is produced by the plant Artemisia annua L. with a very low yield ranging from 0.01% to 0.

View Article and Find Full Text PDF

Terpenoids are present in all organisms but are especially abundant in plants, with more than 30,000 compounds. Not only do they play an important role in the life of plant, but also have high commercial values. However, the content of many important terpenoids in plant is very low.

View Article and Find Full Text PDF

Salidroside is a novel effective adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Because this plant is a rare resource and has low yield, there is great interest in enhancing the production of salidroside.

View Article and Find Full Text PDF

Artemisinin, a new and a very potent antimalarial drug, is produced by the Chinese medicinal herb Artemisia annua L. It is a sesquiterpene lactone with an endoperoxide bridge and is active against chloroquine resistant forms of Plasmodium falciparum. The relatively low yield (0.

View Article and Find Full Text PDF

Objective: To study the effect of several factors on the quantity of hypericin in H. perforatum callus.

Method: High efficiency liquid phase chromatography and plant tissue culture were applied.

View Article and Find Full Text PDF

The flowering promoting factor1 ( fpf1) from Arabidopsis thaliana was transferred into Artemisia annua L. via Agrobacterium tumefaciens. The fpf1 gene was firstly inserted in the binary vector pBI121 under the control of CaMV 35S promoter to construct the plant expression vector pBIfpf1, then leaf explants of A.

View Article and Find Full Text PDF

Isopentenyl transferase (ipt) gene from Agrobacterium tumefaciens T-DNA was placed under the control of a TA29 promoter which expresses specifically in anther. The chimeric TA29-ipt gene was transferred to tobacco plants. During flowering, mRNA of the ipt gene in the anthers of the transgenic plants accumulated and the level of iPA + iPs increased 3-4-fold in the leaves, petals, pistils, and stamens compared with those in the wild type plants.

View Article and Find Full Text PDF