Publications by authors named "Hecht B"

Article Synopsis
  • The study highlights that traditional light scattering analysis of plasmonic nanoparticles doesn't account for the finite thickness of real interfaces, which leads to unique surface effects due to quantum electron behavior.
  • By using electrical gating, the research investigates how charging single plasmonic nanoresonators affects light scattering, revealing that both resonance shifts and changes in resonance width can happen.
  • The findings suggest that these nonclassical surface responses could have significant applications in creating electrically controlled plasmonic devices and metasurfaces.
View Article and Find Full Text PDF

Light-matter superposition states obtained via strong coupling play a decisive role in quantum information processing, but the deleterious effects of material dissipation and environment-induced decoherence inevitably destroy coherent light-matter polaritons over time. Here, we propose the use of coherent perfect absorption under near-field driving to prepare and protect the polaritonic states of a single quantum emitter interacting with a plasmonic nanocavity at room temperature. Our scheme of quantum nanoplasmonic coherent perfect absorption leverages an inherent frequency specificity to selectively initialize the coupled system in a chosen plasmon-emitter dressed state, while the coherent, unidirectional and non-perturbing near-field energy transfer from a proximal plasmonic waveguide can in principle render the dressed state robust against dynamic dissipation under ambient conditions.

View Article and Find Full Text PDF

The growth in remote and hybrid work catalyzed by the COVID-19 pandemic could have significant environmental implications. We assess the greenhouse gas emissions of this transition, considering factors including information and communication technology, commuting, noncommute travel, and office and residential energy use. We find that, in the United States, switching from working onsite to working from home can reduce up to 58% of work's carbon footprint, and the impacts of IT usage are negligible, while office energy use and noncommute travel impacts are important.

View Article and Find Full Text PDF

Stacked organic optoelectronic devices make use of electrode materials with different work functions, leading to efficient large area light emission. In contrast, lateral electrode arrangements offer the possibility to be shaped as resonant optical antennas, radiating light from subwavelength volumes. However, tailoring electronic interface properties of laterally arranged electrodes with nanoscale gaps - to optimize charge-carrier injection - is rather challenging, yet crucial for further development of highly efficient nanolight sources.

View Article and Find Full Text PDF

Visible and infrared photons can be detected with a broadband response via the internal photoeffect. By use of plasmonic nanostructures, i.e.

View Article and Find Full Text PDF

The first two editions of the World Health Organization laboratory manual described the determination of live spermatozoa by a dye exclusion method as a sperm "viability" test, whereas subsequent editions classified it as a "vitality" test, without providing an explanation for the reclassification. Additionally, the hypo-osmotic swelling (HOS) test, which assesses the functional integrity of the human sperm membrane, was placed in the same category as the dye exclusion test. Although the two terms might seem synonymous, the term "vitality" merely means "alive," whereas "viability" assesses qualities or physiological functions of a living entity.

View Article and Find Full Text PDF

When photons interact with matter, forces and torques occur due to the transfer of linear and angular momentum, respectively. The resulting accelerations are small for macroscopic objects but become substantial for microscopic objects with small masses and moments of inertia, rendering photon recoil very attractive to propel micro- and nano-objects. However, until now, using light to control object motion in two or three dimensions in all three or six degrees of freedom has remained an unsolved challenge.

View Article and Find Full Text PDF

Nanoparticle-on-mirror plasmonic nanocavities, capable of extreme optical confinement and enhancement, have triggered state-of-the-art progress in nanophotonics and development of applications in enhanced spectroscopies. However, the optical quality factor and thus performance of these nanoconstructs are undermined by the granular polycrystalline metal films (especially when they are optically thin) used as a mirror. Here, we report an atomically smooth single-crystalline platform for low-loss nanocavities using chemically synthesized gold microflakes as a mirror.

View Article and Find Full Text PDF

Future photonic devices require efficient, multifunctional, electrically driven light sources with directional emission properties and subwavelength dimensions. Electrically driven plasmonic nanoantennas have been demonstrated as enabling technology. Here, we present the concept of a nanoscale organic light-emitting antenna (OLEA) as a color- and directionality-switchable point source.

View Article and Find Full Text PDF

In this preview, we highlight what we believe to be the major contributions of the review and discuss opportunities to build on the work, including by closely examining the incentive structures that contribute to our dataset culture and by further engaging with other disciplines.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic caused a rapid shift to full-time remote work for many information workers. Viewing this shift as a natural experiment in which some workers were already working remotely before the pandemic enables us to separate the effects of firm-wide remote work from other pandemic-related confounding factors. Here, we use rich data on the emails, calendars, instant messages, video/audio calls and workweek hours of 61,182 US Microsoft employees over the first six months of 2020 to estimate the causal effects of firm-wide remote work on collaboration and communication.

View Article and Find Full Text PDF

The purpose of this systematic review is to evaluate the prevalence of disordered eating and eating disorders among women seeking fertility treatment.Observational studies were searched in Ovid MEDLINE, Web of Science, Embase, and PsycInfo. Studies published prior to September 2020 when the search was conducted were considered.

View Article and Find Full Text PDF

The electrical excitation of guided plasmonic modes at the nanoscale enables integration of optical nanocircuitry into nanoelectronics. In this context, exciting plasmons with a distinct modal field profile constitutes a key advantage over conventional single-mode integrated photonics. Here, we demonstrate the selective electrical excitation of the lowest-order symmetric and antisymmetric plasmonic modes in a two-wire transmission line.

View Article and Find Full Text PDF

Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks.

View Article and Find Full Text PDF

Background: Specialty medications may require a prior authorization (PA) before a patient can access the medication. Providers often identify PA approval as a burden for the practice. Pharmacists can facilitate the completion of the PA process.

View Article and Find Full Text PDF

Yagi-Uda antennas are a key technology for efficiently transmitting information from point to point using radio waves. Since higher frequencies allow higher bandwidths and smaller footprints, a strong incentive exists to shrink Yagi-Uda antennas down to the optical regime. Here we demonstrate electrically-driven Yagi-Uda antennas for light with wavelength-scale footprints that exhibit large directionalities with forward-to-backward ratios of up to 9.

View Article and Find Full Text PDF

We describe a setup for time-resolved photoemission electron microscopy with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215-970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications.

View Article and Find Full Text PDF

The optimization of nonlinear optical processes on the nanoscale is a crucial step for the integration of complex functionalities into compact photonic devices and metasurfaces. In such systems, photon upconversion can be achieved with higher efficiencies via third-order processes, such as third-harmonic generation (THG), thanks to the resonantly enhanced volume currents. Conversely, second-order processes, such as second-harmonic generation (SHG), are often inhibited by the symmetry of metal lattices and of common nanoantenna geometries.

View Article and Find Full Text PDF

Gold nanostructures have important applications in nanoelectronics, nano-optics, and in precision metrology due to their intriguing optoelectronic properties. These properties are governed by the bulk band structure but to some extent are tunable via geometrical resonances. Here we show that the band structure of gold itself exhibits significant size-dependent changes already for mesoscopic critical dimensions below 30 nm.

View Article and Find Full Text PDF

Plasmonic resonators can be designed to support spectrally well-separated discrete modes. The associated characteristic spatial patterns of intense electromagnetic hot-spots can be exploited to enhance light-matter interaction. Here, we study the local field dynamics of individual hot-spots within a nanoslit resonator by detecting characteristic changes of the photoelectron emission signal on a scale of ∼12 nm using time-resolved photoemission electron microscopy (TR-PEEM) and by excitation with the output from a 20 fs, 1 MHz noncollinear optical parametric amplifier (NOPA).

View Article and Find Full Text PDF

The photon spin is an important resource for quantum information processing as is the electron spin in spintronics. However, for subwavelength confined optical excitations, polarization as a global property of a mode cannot be defined. Here, we show that any polarization state of a plane-wave photon can reversibly be mapped to a pseudospin embodied by the two fundamental modes of a subwavelength plasmonic two-wire transmission line.

View Article and Find Full Text PDF

Helium ion milling of chemically-synthesized micron-sized gold flakes is performed to fabricate ultra-narrow nanoslit cavities with a varying length and width down to 5 nm. Their plasmon resonances are characterized by one-photon photoluminescence spectroscopy. The combination of fabrication based on single-crystalline gold and resonant modes with low radiative losses leads to remarkably high quality factors of up to 24.

View Article and Find Full Text PDF

In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude. Control of such near-field light-matter interaction is essential for applications in biosensing, light harvesting and quantum communication and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates. However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness.

View Article and Find Full Text PDF