Pharmacological mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) opening protects against ischemic damage and mimics ischemic preconditioning. However, physiological and pathological signaling events that open this channel are still not fully understood. We found that catalase, which removes H(2)O(2), is capable of reversing the beneficial effects of ischemic preconditioning but not of mitoK(ATP) agonist diazoxide.
View Article and Find Full Text PDFMitochondrial ATP-sensitive K+ channels (mitoKATP) mediate ischemic preconditioning, a cardioprotective procedure. MitoKATP activity has been proposed to either enhance or prevent the release of reactive oxygen species. This study tested the redox effects of mitoKATP in order to clarify the role of these channels during preconditioning.
View Article and Find Full Text PDFTwo distinct K+ uniporters have been described in mitochondria, ATP-sensitive and Ca2+-activated. Both are capable of protecting tissues against ischemia and other forms of injury when active. These findings indicate a central role for mitochondrial K+ uptake in tissue protection.
View Article and Find Full Text PDFIschemia followed by reperfusion results in impairment of cellular and mitochondrial functionality due to opening of mitochondrial permeability transition pores. On the other hand, activation of mitochondrial ATP-sensitive K(+) channels (mitoK(ATP)) protects the heart against ischemic damage. This study examined the effects of mitoK(ATP) and mitochondrial permeability transition on isolated rat heart mitochondria and cardiac cells submitted to simulated ischemia and reperfusion (cyanide/aglycemia).
View Article and Find Full Text PDF