In control system design, managing measurement noise is a critical challenge, requiring a balance between responsiveness and noise suppression. Traditional methods often involve trade-offs, compromising either aspect. This paper proposes a novel solution by integrating a Finite Impulse Response (FIR) filter within the discrete controller transfer function, coupled with disturbance rejection through the Internal Model Principle (IMP).
View Article and Find Full Text PDFWe explore the incremental flatness based control of single input under-actuated nonlinear Hamiltonian systems exhibiting a controllable tangent linearization model around a given equilibrium point. General properties of controllable linearized Hamiltonian systems are presented, which significantly ease the stabilizing, or output reference trajectory tracking, feedback controller design for the nonlinear system. Controllability of the tangent linear system is equivalent to its flatness.
View Article and Find Full Text PDFIn this paper, we propose a fast online closed-loop identification method combined with an output-feedback controller of the generalized proportional integral (GPI) type for the control of an uncertain flexible robotic arm with unknown mass at the tip, including a Coulomb friction term in the motor dynamics. A fast nonasymptotic algebraic identification method developed in continuous time is used to identify the unknown system parameter and update the designed certainty equivalence GPI controller. In order to verify this method, several informative simulations and experiments are shown.
View Article and Find Full Text PDF