Publications by authors named "Heba Ewida"

Acetyl coenzyme A (acetyl-CoA), a pivotal regulatory metabolite, is a product of numerous catabolic reactions and a substrate for various anabolic responses. Its role extends to crucial physiological processes, such as glucose homeostasis and free fatty acid utilization. Moreover, acetyl-CoA plays a significant part in reshaping the metabolic microenvironment and influencing the progression of several diseases and conditions, including cancer, insulin resistance, diabetes, heart failure, fear, and neuropathic pain.

View Article and Find Full Text PDF

The discovery of novel CDK2 inhibitors is crucial for developing targeted anticancer therapies. Thus, in this study, we aimed to design, synthesize, and evaluate a series of novel pyrazole derivatives (2a-g, 7a-d, 8a and b, 9, and 10) for their potential as CDK2/cyclin A2 enzyme inhibitors. The newly synthesized compounds were screened at 50 μM for CDK2 inhibition, followed by IC profiling of the most promising candidates.

View Article and Find Full Text PDF

The heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease.

View Article and Find Full Text PDF

Relapsing-remitting multiple sclerosis (RRMS) is the most prevalent MS subtype. Ample evidence has indicated that long noncoding RNAs (lncRNAs) are crucial players in autoimmune and inflammatory disorders. This study investigated the expression of lnc-EGFR, SNHG1, and lincRNA-Cox2 in RRMS patients during active relapses and in remission.

View Article and Find Full Text PDF

Obesity affects a growing fraction of the population and is a risk factor for type 2 diabetes and cardiovascular disease. Even in the absence of hypertension and coronary artery disease, type 2 diabetes can result in a heart disease termed diabetic cardiomyopathy. Diminished glucose oxidation, increased reliance on fatty acid oxidation for energy production, and oxidative stress are believed to play causal roles.

View Article and Find Full Text PDF

Inhibiting the Dihydrofolate reductase (DHFR) enzyme has been validated in multiple clinical manifestations related to bacterial infection, malaria, and multiple types of cancer. Herein, novel series of 3-methyl-imidazo[2,1-b] thiazole-based analogs were synthesized and biologically evaluated for their in vitro inhibitory profile towards DHFR. Compounds 22 and 23 exhibited potent inhibitory profile targeting DHFR (IC 0.

View Article and Find Full Text PDF

Novel series of imidazo[2,1-b]thiazole analogs were designed, synthesized, and biologically evaluated as indoleamine 2,3-dioxygenase (IDO1) inhibitors. Imidazo[2,1-b]thiazoles 6, 7, and 8 showed inhibitory profiles against IDO1 at IC values of 68.48, 82.

View Article and Find Full Text PDF

Objective: Molecular markers for the detection of breast cancer and its different types, grades, and stages lack enough sensitivity and specificity. This study evaluates the expression of miRNAs 9 and 342 in sera of different types, grades, and stages of BC. Moreover, the assessment of their sensitivity, specificity, diagnostic, and prognostic role in detecting different types of BC.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) have been recently recognized as key players of gene expression in cerebral pathogenesis. Thus, their potential use in stroke diagnosis, prognosis, and therapy is actively pursued. Due to the complexity of the disease, identifying stroke-specific lncRNAs remains a challenge.

View Article and Find Full Text PDF

A new series of 6-substituted amido, azo or thioureido-quinazolin-4(3H)-one was synthesized and tested for their in-vitro antitumor activity. Compounds 21, 53 and 60 showed broad spectrum antitumor activity with average IC values of 6.7, 7.

View Article and Find Full Text PDF

Background: Dysregulation of miRNAs has been associated with many clinical conditions, including coronary artery disease (CAD). MiRNAs roles in patients with type 2 diabetes mellitus (T2D) with or without CAD, however, have not been clearly understood. Therefore we studied the expression of miRNAs 342 and 450 and the activity of the NADPH oxidase 4 (NOX-4), and their association with anthropometric and biochemical parameters of hyperglycaemia and dyslipidaemia.

View Article and Find Full Text PDF

New series of thiazolo[4,5-d]pyridazin and imidazo[2',1':2,3]thiazolo[4,5-d]pyridazin analogues were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activity. Compounds 13 and 43 proved to be DHFR inhibitors with IC 0.05 and 0.

View Article and Find Full Text PDF

Development of HDAC inhibitors have become an ultimate need targeting different types of cancer. In silico virtual screening was applied to screen novel scaffolds via scaffold hopping strategy to develop different acrylamide and aryl/heteroaryl hydrazide based analogs merged with thioether moiety. The acrylamide based analogs showed significant hydrophobic interaction within binding pocket in addition to co-ordination with Zn via carbonyl group, however the aryl/heteroaryl hydrazide based analogs showed binding towards Zn via thiol moiety.

View Article and Find Full Text PDF

A new series of 1,3-thiazoles and thiazolo[4,5-d]pyridazine both bearing the 2-thioureido function were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activities. Compound 26 proved to be the most active DHFR inhibitor (IC of 0.06μM).

View Article and Find Full Text PDF

A new series of 2-mercapto-quinazolin-4-one analogues was designed, synthesized and evaluated for their in vitro DHFR inhibition, antitumor and antimicrobial activity. Compound 17 proved to be the most active DHFR inhibitor with IC value of 0.01μM, eight fold more active than methotrexate (MTX).

View Article and Find Full Text PDF