Lipid nanoparticles have proved an attractive approach for drug delivery; however, the challenges of optimising formulation stability and increasing drug loading have limited progression. In this work, we investigate the role of unpegylated lipid surfactants (helper lipids) in nanoparticle formation and the effect of blending helper lipids with pegylated lipid surfactants on the formation and stability of lipid-based nanoparticles by nanoprecipitation. Furthermore, blends of unpegylated/pegylated lipid surfactants were examined for ability to accommodate higher drug loading formulations by means of a higher weight percentage (wt%) of drug relative to total mass of formulation components ( drug, surfactants and lipids).
View Article and Find Full Text PDFHuman Immunodeficiency Virus (HIV) is a global health concern to which nanomedicine approaches provide opportunities to improve the bioavailability of existing drugs used to treat HIV.In this article, lipid polymer hybrid nanoparticles (LPHNs) were developed as a system to provide a combination drug delivery of two leading antiretroviral drugs; darunavir (DRV) and its pharmacokinetic enhancer ritonavir (RTV).The LPHNs were designed with a poly(D, l-lactide-co-glycolide) (PLGA) core, and soybean lecithin (SBL) and Brij 78 as the stabilizers.
View Article and Find Full Text PDF