Publications by authors named "Heba Al-Siddiqi"

Diabetes mellitus (DM), is a chronic disorder characterized by impaired glucose homeostasis that results from the loss or dysfunction of pancreatic β-cells leading to type 1 diabetes (T1DM) and type 2 diabetes (T2DM), respectively. Pancreatic β-cells rely to a great degree on their endoplasmic reticulum (ER) to overcome the increased secretary need for insulin biosynthesis and secretion in response to nutrient demand to maintain glucose homeostasis in the body. As a result, β-cells are potentially under ER stress following nutrient levels rise in the circulation for a proper pro-insulin folding mediated by the unfolded protein response (UPR), underscoring the importance of this process to maintain ER homeostasis for normal β-cell function.

View Article and Find Full Text PDF
Article Synopsis
  • - Diabetes mellitus, affecting over 500 million adults worldwide, is primarily divided into type 1 (T1DM) and type 2 (T2DM), with key issues relating to pancreatic beta cell health and function.
  • - The role of calcium (Ca) and its signaling pathways in maintaining proper beta cell function is emphasized, along with the impact of Ca dysfunction on diabetes onset.
  • - Human pluripotent stem cell (hPSC) technology shows potential for creating functional pancreatic beta cells from diabetic patients' stem cells, but enhancing Ca dynamics in these cells is crucial to improve their functionality and mimic adult beta cells better.
View Article and Find Full Text PDF

Diabetes mellitus (DM), currently affecting more than 537 million people worldwide is a chronic disease characterized by impaired glucose metabolism resulting from a defect in insulin secretion, action, or both due to the loss or dysfunction of pancreatic β cells. Since cadaveric islet transplantation using Edmonton protocol has served as an effective intervention to restore normoglycaemia in T1D patients for months, stem cell-derived β cells have been explored for cell replacement therapy for diabetes. Thus, great effort has been concentrated by scientists on developing in vitro differentiation protocols to realize the therapeutic potential of hPSC-derived β cells.

View Article and Find Full Text PDF

Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified.

View Article and Find Full Text PDF

Diabetes mellitus (DM), currently affecting 463 million people worldwide is a chronic disease characterized by impaired glucose metabolism resulting from the loss or dysfunction of pancreatic β-cells with the former preponderating in type 1 diabetes (T1DM) and the latter in type 2 diabetes (T2DM). Because impaired insulin secretion due to dysfunction or loss of pancreatic β-cells underlies different types of diabetes, research has focused its effort towards the generation of pancreatic β-cells from human pluripotent stem cell (hPSC) as a potential source of cells to compensate for insulin deficiency. However, many protocols developed to differentiate hPSCs into insulin-expressing β-cells in vitro have generated hPSC-derived β-cells with either immature phenotype such as impaired glucose-stimulated insulin secretion (GSIS) or a weaker response to GSIS than cadaveric islets.

View Article and Find Full Text PDF

COVID-19 complications still present a huge burden on healthcare systems and warrant predictive risk models to triage patients and inform early intervention. Here, we profile 893 plasma proteins from 50 severe and 50 mild-moderate COVID-19 patients, and 50 healthy controls, and show that 375 proteins are differentially expressed in the plasma of severe COVID-19 patients. These differentially expressed plasma proteins are implicated in the pathogenesis of COVID-19 and present targets for candidate drugs to prevent or treat severe complications.

View Article and Find Full Text PDF

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable human cardiac cells to be studied in vitro, although they use glucose as their primary metabolic substrate and do not recapitulate the properties of adult cardiomyocytes. Here, we have explored the interplay between maturation by stimulation of fatty acid oxidation and by culture in 3D. We have investigated substrate metabolism in hiPSC-CMs grown as a monolayer and in 3D, in porous collagen-derived scaffolds and in engineered heart tissue (EHT), by measuring rates of glycolysis and glucose and fatty acid oxidation (FAO), and changes in gene expression and mitochondrial oxygen consumption.

View Article and Find Full Text PDF

The heart is a metabolic omnivore and the adult heart selects the substrate best suited for each circumstance, with fatty acid oxidation preferred in order to fulfill the high energy demand of the contracting myocardium. The fetal heart exists in an hypoxic environment and obtains the bulk of its energy via glycolysis. After birth, the "fetal switch" to oxidative metabolism of glucose and fatty acids has been linked to the loss of the regenerative phenotype.

View Article and Find Full Text PDF

The utility of human pluripotent stem cells is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into white or brown adipocytes. We found that inducible expression of PPARG2 alone or combined with CEBPB and/or PRDM16 in mesenchymal progenitor cells derived from pluripotent stem cells programmed their development towards a white or brown adipocyte cell fate with efficiencies of 85%-90%.

View Article and Find Full Text PDF