Purpose: Eganelisib (IPI-549) is a first-in-class, orally administered, highly selective PI3Kγ inhibitor with antitumor activity alone and in combination with programmed cell death protein 1/ligand 1 (PD-1/PD-L1) inhibitors in preclinical studies. This phase 1/1b first-in-human, MAcrophage Reprogramming in Immuno-Oncology-1 (NCT02637531) study evaluated the safety and tolerability of once-daily eganelisib as monotherapy and in combination with nivolumab in patients with solid tumors.
Patients And Methods: Dose-escalation cohorts received eganelisib 10-60 mg as monotherapy (n = 39) and 20-40 mg when combined with nivolumab (n = 180).
BCR-ABL is a key mediator in the pathogenesis of all cases of chronic myelogenous leukemia (CML) and a subset of precursor B-acute lymphoblastic leukemia (Ph+ALL). Previous animal and cell-based studies have shown that the expression of members of the Forkhead family of tumor suppressors, including FoxO3, is suppressed in BCR-ABL-expressing cells. Furthermore, it has been reported that the proteasomal degradation pathway plays an important role in suppression of FoxO expression in BCR-ABL-transformed cells.
View Article and Find Full Text PDFBCR-ABL plays an essential role in the pathogenesis of chronic myeloid leukemia (CML) and some cases of acute lymphocytic leukemia (ALL). Although ABL kinase inhibitors have shown great promise in the treatment of CML, the persistence of residual disease and the occurrence of resistance have prompted investigations into the molecular effectors of BCR-ABL. Here, we show that BCR-ABL stimulates the proteasome-dependent degradation of members of the forkhead family of tumor suppressors in vitro, in an in vivo animal model, and in samples from patients with BCR-ABL-positive CML or ALL.
View Article and Find Full Text PDF