Background: Adoptive cell transfer of tumor-specific T lymphocytes (T cells) is proving to be an effective strategy for treating established tumors in cancer patients. One method of generating these cells is accomplished through engineering bulk T cell populations to express chimeric antigen receptors (CARs), which are specific for tumor antigens. Traditionally, these CARs are targeted against tumor antigens using single-chain antibodies (scFv).
View Article and Find Full Text PDFLigands for the NKG2D receptor are overexpressed on tumors, making them interesting immunotherapy targets. To assess the tumoricidal properties of T cells directed to attack NKG2D ligands, we engineered murine T cells with two distinct NKG2D-based chimeric antigen receptors (CARs): (i) a fusion between the NKG2D receptor and the CD3ζ chain and (ii) a conventional second-generation CAR, where the extracellular domain of NKG2D was fused to CD28 and CD3ζ. To enhance the CAR surface expression, we also engineered T cells to coexpress DAP10.
View Article and Find Full Text PDFThe use of engineered T cells in adoptive transfer therapies has shown significant promise in treating hematological cancers. However, successes treating solid tumors are much less prevalent. Oncolytic viruses (OVs) have the capacity to induce specific lysis of tumor cells and indirectly impact tumor growth via vascular shutdown.
View Article and Find Full Text PDFDespite clear evidence of immunogenicity, cancer vaccines only provide a modest clinical benefit. To evaluate the mechanisms that limit tumor regression following vaccination, we have investigated the weak efficacy of a highly immunogenic experimental vaccine using a murine melanoma model. We discovered that the tumor adapts rapidly to the immune attack instigated by tumor-specific CD8+ T cells in the first few days following vaccination, resulting in the upregulation of a complex set of biological networks, including multiple immunosuppressive processes.
View Article and Find Full Text PDFThe memory CD8(+) T cell population elicited by immunization with recombinant human adenovirus serotype 5 (rHuAd5) vaccines is composed primarily of effector and effector memory cells (T(EM)) with limited polyfunctionality. In this study, we investigated whether treatment with immunomodulators could enhance and/or redistribute the CD8(+) memory population elicited by rHuAd5. Vaccination in combination with both rapamycin (to modulate differentiation) and an OX40 agonist (to enhance costimulation) increased both the quantity and polyfunctionality of the CD8(+) memory T cell population, with expansion of the T(EM) and memory precursor populations.
View Article and Find Full Text PDF