Environ Sci Technol
November 2012
Antimicrobial resistance remains a serious and growing human health challenge. The water environment may represent a key dissemination pathway of resistance elements to and from humans. However, quantitative relationships between landscape features and antibiotic resistance genes (ARGs) have not previously been identified.
View Article and Find Full Text PDFA novel approach utilizing antibiotic-resistance-gene (ARG) molecular signatures was applied to track the sources of ARGs at sites along the Cache la Poudre (Poudre) and South Platte Rivers in Colorado. Two lines of evidence were employed: (1) detection frequencies of 2 sulfonamide and 11 tetracycline ARGs and (2) tet(W) phylotype and phylogenetic analysis. A GIS database indicating the locations of wastewater treatment plants (WWTPs) and animal feeding operations (AFOs) in the watershed was also constructed to assess congruence of the surrounding landscape with the putative sources identified by ARG molecular signatures.
View Article and Find Full Text PDFThe purpose of this study was to determine the response of antibiotics and antibiotic resistance genes (ARG) to manure management. A pilot field study was conducted using horse manure containing no antibiotics, into which chlortetracycline (CTC), tylosin (TYL), and monensin (MON) were spiked and compared to unspiked controls. Subsequently, a large-scale field study was conducted comparing manure from a dairy with minimal use of antibiotics and a feedlot with regular subtherapeutic use of antibiotics.
View Article and Find Full Text PDFEnviron Sci Technol
December 2006
This study explores antibiotic resistance genes (ARGs) as emerging environmental contaminants. The purpose of this study was to investigate the occurrence of ARGs in various environmental compartments in northern Colorado, including Cache La Poudre (Poudre) River sediments, irrigation ditches, dairy lagoons, and the effluents of wastewater recycling and drinking water treatment plants. Additionally, ARG concentrations in the Poudre River sediments were analyzed at three time points at five sites with varying levels of urban/agricultural impact and compared with two previously published time points.
View Article and Find Full Text PDF