Publications by authors named "Heather Simon"

The US Environmental Protection Agency (EPA) estimates on-road vehicles emissions using the Motor Vehicle Emission Simulator (MOVES). We developed updated ammonia emission rates for MOVES based on road-side exhaust emission measurements of light-duty gasoline and heavy-duty diesel vehicles. The resulting nationwide on-road vehicle ammonia emissions are 1.

View Article and Find Full Text PDF

Subtraction magnetic resonance imaging (MRI) has been reported to increase accuracy in the diagnosis of meningeal and inflammatory brain diseases in small animals. 3D T1W gradient recalled echo (GRE) techniques have been proposed as a suitable alternative to conventional spin echo sequences in imaging the canine brain. The aim of this study was to compare subtraction images and paired pre- and post-contrast 3D T1W GRE fat suppressed (FS) images in canine and feline MRI studies using clinical diagnosis as the gold standard.

View Article and Find Full Text PDF

Reduced complexity tools that provide a representation of both primarily emitted particulate matter with an aerodynamic diameter less than 2.5 μm (PM), secondarily formed PM, and ozone (O) allow for a quick assessment of many iterations of pollution control scenarios. Here, a new reduced complexity tool, Pattern Constructed Air Pollution Surfaces (PCAPS), that estimates annual average PM and seasonal average maximum daily average 8 h (MDA8) O for any source location in the United States is described and evaluated.

View Article and Find Full Text PDF

Chemical mechanisms describe how emissions of gases and particles evolve in the atmosphere and are used within chemical transport models to evaluate past, current, and future air quality. Thus, a chemical mechanism must provide robust and accurate predictions of air pollutants if it is to be considered for use by regulatory bodies. In this work, we provide an initial evaluation of the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMMv1.

View Article and Find Full Text PDF

Reduced-form modeling approaches are an increasingly popular way to rapidly estimate air quality and human health impacts related to changes in air pollutant emissions. These approaches reduce computation time by making simplifying assumptions about pollutant source characteristics, transport and chemistry. Two reduced form tools used by the Environmental Protection Agency in recent assessments are source apportionment-based benefit per ton (SA BPT) and source apportionment-based air quality surfaces (SABAQS).

View Article and Find Full Text PDF

Blastomycosis is a systemic mycotic infection caused by dimorphic fungi. The disease is rare in cats, and reports on imaging findings with central nervous system (CNS) involvement are limited. Magnetic resonance imaging (MRI) was performed antemortem in three feline patients.

View Article and Find Full Text PDF

Anthropogenic nitrogen oxide (NO) and volatile organic compound (VOC) emissions in the U.S. have declined substantially over the last decade, altering the NO-VOC chemistry and ozone (O) production characteristics of many areas.

View Article and Find Full Text PDF

Atmospheric nitrogen oxide and nitrogen dioxide (NO + NO, together termed as NO ) estimates from annual photochemical simulations for years 2002-2016 are compared to surface network measurements of NO and total gas-phase-oxidized reactive nitrogen (NO ) to evaluate the Community Multiscale Air Quality (CMAQ) modeling system performance by U.S. region, season, and time of day.

View Article and Find Full Text PDF

This study uses Las Vegas near-road measurements of carbon monoxide (CO) and nitrogen oxides (NO) to test the consistency of onroad emission constraint methodologies. We derive commonly used CO to NO ratios (ΔCO:ΔNO) from cross-road gradients and from linear regression using ordinary least squares (OLS) regression and orthogonal regression. The CO to NO ratios are used to infer NO emission adjustments for a priori emissions estimates from EPA's MOtor Vehicle Emissions Simulator (MOVES) model assuming unbiased CO.

View Article and Find Full Text PDF

Macpherson et al. (2017) presented a mathematical programming model that identifies minimum-cost control strategies that reduce emissions regionally to meet ambient air quality targets. This project introduces the Cost And Benefit Optimization Tool for Ozone (CABOT-O), which extends the previous model by updating emissions and air quality relationships, adding a health impacts module, and quantifying distributional impacts.

View Article and Find Full Text PDF

The United States (US) Environmental Protection Agency (EPA)'s SPECIATE database contains speciated particulate matter (PM) and volatile organic compound (VOC) emissions profiles. Emissions profiles from anthropogenic combustion, industry, wildfires, and agricultural sources among others are key inputs for creating chemically-resolved emissions inventories for air quality modeling. While the database and its use for air quality modeling are routinely updated and evaluated, this work sets out to systematically prioritize future improvements and communicate speciation data needs to the research community.

View Article and Find Full Text PDF

Policy analysts and researchers often use models to translate expected emissions changes from pollution control policies to estimates of air pollution changes and resulting changes in health impacts. These models can include both photochemical Eulerian grid models or reduced complexity models; these latter models make simplifying assumptions about the emissions-to-air quality relationship as a means of reducing the computational time needed to simulate air quality. This manuscript presents a new database of photochemical- and reduced complexity-modelled changes in annual average particulate matter with aerodynamic diameter less than 2.

View Article and Find Full Text PDF

Previous studies have proposed that model performance statistics from earlier photochemical grid model (PGM) applications can be used to benchmark performance in new PGM applications. A challenge in implementing this approach is that limited information is available on consistently calculated model performance statistics that vary spatially and temporally over the U.S.

View Article and Find Full Text PDF

Emission inventories are the foundation for cost-effective air quality management activities. In 2005, a report by the public/private partnership North American Research Strategy for Tropospheric Ozone (NARSTO) evaluated the strengths and weaknesses of North American emissions inventories and made recommendations for improving their effectiveness. This paper reviews the recommendation areas and briefly discusses what has been addressed, what remains unchanged, and new questions that have arisen.

View Article and Find Full Text PDF

Epidemiologic studies relating ambient ozone concentrations to adverse health outcomes have typically relied on spatial averages of concentrations from nearby monitoring stations, referred to as "composite monitors." This practice reflects the assumption that ambient ozone concentrations within an urban area are spatially homogenous. We tested the validity of this assumption by comparing ozone data measured at individual monitoring sites within selected US urban areas to their respective composite monitor time series.

View Article and Find Full Text PDF

Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites.

View Article and Find Full Text PDF

Modeled source attribution information from the Community Multiscale Air Quality model was coupled with ambient data from the 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality Baltimore field study. We assess source contributions and evaluate the utility of using aircraft measured CO and NO relationships to constrain emission inventories. We derive ambient and modeled ΔCO:ΔNO ratios that have previously been interpreted to represent CO:NO ratios in emissions from local sources.

View Article and Find Full Text PDF

The air quality of many large coastal areas in the United States is affected by the confluence of polluted urban and relatively clean marine airmasses, each with distinct atmospheric chemistry. In this context, the role of iodide-mediated ozone (O) deposition over seawater and marine halogen chemistry accounted for in both the lateral boundary conditions and coastal waters surrounding the continental U.S.

View Article and Find Full Text PDF

Background: Ambient monitoring data show spatial gradients in ozone (O3) across urban areas. Nitrogen oxide (NOx) emissions reductions will likely alter these gradients. Epidemiological studies often use exposure surrogates that may not fully account for the impacts of spatially and temporally changing concentrations on population exposure.

View Article and Find Full Text PDF

In this work, we evaluate ambient ozone trends at urban, suburban, and rural monitoring sites across the United States over a period of decreasing NOx and VOC emissions (1998-2013). We find that decreasing ozone trends generally occur in the summer, in less urbanized areas, and at the upper end of the ozone distribution. Conversely, increasing ozone trends generally occur in the winter, in more urbanized areas, and at the lower end of the ozone distribution.

View Article and Find Full Text PDF

Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.

View Article and Find Full Text PDF

Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes.

View Article and Find Full Text PDF

In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes.

View Article and Find Full Text PDF

Modeled ratios of organic mass to organic carbon (OM/OC) and oxygen to carbon (n(O)/n(C)) in organic particulate matter are presented across the US for the first time and evaluated extensively against ambient measurements. The base model configuration systematically underestimates OM/OC ratios during winter and summer months. Model performance is greatly improved by applying source-specific OM/OC ratios to the primary organic aerosol (POA) emissions and incorporating a new parametrization to simulate oxidative aging of POA in the atmosphere.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: