J Trauma Acute Care Surg
August 2019
Background: Previous ex vivo studies have shown that polyethylene glycol-20,000 Da (PEG-20k), a novel synthetic polymer that is highly effective for resuscitation, has a hypocoagulable effect on human blood. This study's objective was to determine the in vivo effects of PEG-20k-based resuscitation solutions on coagulation and platelet function in a porcine model of hemorrhagic shock.
Methods: Anesthetized pigs underwent controlled hemorrhage until the lactate reached 7 mmol/L or 50% to 55% of their estimated blood volume was removed.
Donation after circulatory death donors (DCD) have the potential to increase the number of heart transplants. The DCD hearts undergo an extended period of warm ischemia, which mandates the use of machine perfusion preservation if they are to be successfully recovered for transplantation. Because the minimum coronary artery flow needed to meet the basal oxygen demand (DCRIT) of a DCD heart during machine perfusion preservation is critical and yet unknown, we studied this in a DCD rat heart model.
View Article and Find Full Text PDFBackground: Ischemia from organ preservation or donation causes cells and tissues to swell owing to loss of energy-dependent mechanisms of control of cell volume. These volume changes cause substantial preservation injury, because preventing these changes by adding cell impermeants to preservation solutions decreases preservation injury. The objective of this study was to assess if this effect could be realized early in uncontrolled donation after cardiac death (DCD) livers by systemically loading donors with gluconate immediately after death to prevent accelerated swelling injury during the warm ischemia period before liver retrieval.
View Article and Find Full Text PDFBackground: Hypovolemic shock reduces oxygen delivery and compromises energy-dependent cell volume control. Consequent cell swelling compromises microcirculatory flow, which reduces oxygen exchange further. The importance of this mechanism is highlighted by the effectiveness of cell impermeants in low-volume resuscitation (LVR) solutions in acute studies.
View Article and Find Full Text PDFObjective: To determine the role of cell swelling in severe hemorrhagic shock and resuscitation injury.
Background: Circulatory shock induces the loss of energy-dependent volume control mechanisms. As water enters ischemic cells, they swell, die, and compress nearby vascular structures, which further aggravates ischemia by reducing local microcirculatory flow and oxygenation.