Drug transporters mediate the movement of endobiotics and xenobiotics across biological membranes in multiple organs and in most tissues. As such, they are involved in physiology, development of disease, drug pharmacokinetics, and ultimately the clinical response to a myriad of medications. Genetic variants in transporters cause population-specific differences in drug transport and are responsible for considerable inter-individual variation in physiology and pharmacotherapy.
View Article and Find Full Text PDFThe organic anion transporting polypeptide (OATP) family of transporters has been implicated in prostate cancer disease progression probably by transporting hormones or drugs. In this study, we aimed to elucidate the expression, frequency, and relevance of OATPs as a biomarker in hormone-dependent cancers. We completed a study examining SLCO1B3, SLCO1B1 and SLCO2B1 mRNA expression in 381 primary, independent patient samples representing 21 cancers and normal tissues.
View Article and Find Full Text PDFWhile several hypotheses have been put forward to explain how prostate tumors become resistant to androgen deprivation therapy, the mechanism by which prostate tumors have increased androgen concentrations as compared to the serum has been poorly explored. Using a stromal/epithelial cell co-culture model, Mizokami et al. have demonstrated how prostate-, bone- and prostate tumor-derived stromal cells participate with tumor-derived epithelial cells (i.
View Article and Find Full Text PDFEncapsulating cells within a polymer matrix creates a three-dimensional (3D) scaffold that may more accurately represent the native microenvironment and cell organization. Here we report a porous scaffold prepared from a photocurable elastomer, poly(glycerolco-sebacate)-acrylate (PGSA). The scaffold porosity, swelling, mass loss, toxicity and mechanical properties, suggest that porous PGSA could be used to support the growth and differentiation of encapsulated cells.
View Article and Find Full Text PDFIn this work, we combined computational protein-protein docking with computational and experimental mutagenesis to predict the structure of the complex formed by monoclonal antibody 806 (mAb 806) and the epidermal growth factor receptor (EGFR). We docked mAb 806, an antitumor antibody, to its epitope of EGFR residues 287-302. Potential mAb 806-EGFR orientations were generated, and computational mutagenesis was used to filter them according to their agreement with experimental mutagenesis data.
View Article and Find Full Text PDF