Breast Cancer Res Treat
February 2008
Three known non-synonymous polymorphisms (Ala394Thr, Ser471Leu and Pro690Ala) in the largest circadian gene, Neuronal PAS domain protein 2 (NPAS2), were genotyped in a breast cancer case-control study conducted in Connecticut, USA (431 cases and 476 controls). We found that women with the heterozygous Ala394Thr genotype were significantly associated with breast cancer risk compared to those with the common homozygous Ala394Ala (OR = 0.61, 0.
View Article and Find Full Text PDFCircadian disruption is theorized to cause immune dysregulation, which is the only established risk factor for non-Hodgkin's lymphoma (NHL). Genes responsible for circadian rhythm are also involved in cancer-related biological pathways as potential tumor suppressors. However, no previous studies have examined associations between circadian genes and NHL risk.
View Article and Find Full Text PDFIntroduction: MBD2, the gene encoding methyl-CpG-binding domain (MBD)2, is a major methylation related gene and functions as a transcriptional repressor that can specifically bind to the methylated regions of other genes. MBD2 may also mediate gene activation because of its potential DNA demethylase activity. The present case-control study investigated associations between two single nucleotide polymorphisms (SNPs) in the MBD2 gene and breast cancer risk.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
January 2005
Circadian disruption has been indicated as a risk factor for breast cancer in recent epidemiologic studies. A novel finding in circadian biology is that genes responsible for circadian rhythm also regulate many other biological pathways, including cell proliferation, cell cycle regulation, and apoptosis. Therefore, mutations in circadian genes could conceivably result in deregulation of these processes and contribute to tumor development, and be markers for susceptibility to human cancer.
View Article and Find Full Text PDF