Central tolerance of thymocytes to self-antigen depends on the medullary thymic epithelial cell (mTEC) transcription factor autoimmune regulator (Aire), which drives tissue-restricted antigen (TRA) gene expression. Vitamin D signaling regulates Aire and TRA expression in mTECs, providing a basis for links between vitamin D deficiency and autoimmunity. We find that mice lacking Cyp27b1, which cannot produce hormonally active vitamin D, display profoundly reduced thymic cellularity, with a reduced proportion of Aire mTECs, attenuated TRA expression, and poorly defined cortical-medullary boundaries.
View Article and Find Full Text PDFChronic viral infections cause thymic involution yet the potential for broader, longer-term impact on thymic composition remains unexplored. Here we show that chronic, but not acute, lymphocytic choriomeningitis virus infection promotes a unique population of immature B cells in the thymus. We show that chronic viral infection promotes signals within the thymus, including the expression of B-cell activating factor (BAFF), that favor the maturation of this population as these cells acquire expression of CD19 and immunoglobulin M.
View Article and Find Full Text PDFThe Canadian Society for Immunology (CSI) established a formal Equity, Diversity, and Inclusion (EDI) Committee with the goal of providing EDI advocacy and leadership within the CSI, as well as in the broader scientific community. A first task of this committee was to review the publicly available historical data on gender representation within the CSI's membership, leadership, award recipients, and conference chairs/presenters as a step in establishing a baseline reference point and monitoring the trajectory of future success in achieving true inclusion. We found that, except for overall membership and a specific subset of awards, all categories showed a historical bias toward men, particularly prior to 2010.
View Article and Find Full Text PDFAdoptive T cell therapies rely on the production of T cells with an antigen receptor that directs their specificity toward tumor-specific antigens. Methods for identifying relevant T cell receptor (TCR) sequences, predominantly achieved through the enrichment of antigen-specific T cells, represent a major bottleneck in the production of TCR-engineered cell therapies. Fluctuation of intracellular calcium is a proximal readout of TCR signaling and candidate marker for antigen-specific T cell identification that does not require T cell expansion; however, calcium fluctuations downstream of TCR engagement are highly variable.
View Article and Find Full Text PDFThe T cell receptor (TCR) determines specificity and affinity for both foreign and self-peptides presented by the major histocompatibility complex (MHC). Although the strength of TCR interactions with self-pMHC impacts T cell function, it has been challenging to identify TCR sequence features that predict T cell fate. To discern patterns distinguishing TCRs from naive CD4 T cells with low versus high self-reactivity, we used data from 42 mice to train a machine learning (ML) algorithm that identifies population-level differences between TCRβ sequence sets.
View Article and Find Full Text PDFPediatric acute megakaryoblastic leukemia (AMKL) is an aggressive blood cancer associated with poor therapeutic response and high mortality. Here we describe the development of CBFA2T3-GLIS2-driven mouse models of AMKL that recapitulate the phenotypic and transcriptional signatures of the human disease. We show that an activating Ras mutation that occurs in human AMKL increases the penetrance and decreases the latency of CBF2AT3-GLIS2-driven AMKL.
View Article and Find Full Text PDFThe Canadian Society for Immunology (CSI) organized an Equity, Diversity and Inclusion (EDI) training workshop during its 2022 Scientific Meeting to improve understanding of EDI and explore strategies to achieve EDI goals in the scientific environment. The workshop focused on identifying Specific, Measurable, Achievable, Realistic and Timely (SMART) goals related to EDI in academia through small group discussions and learning exercises. Attendees highlighted several equity considerations within the field of academic immunology, including financial barriers, lack of diversity in research teams and gender bias; they emphasized the importance of creating an inclusive and accessible research environment.
View Article and Find Full Text PDFVitamin D deficiency is associated with the development of autoimmunity, which arises from defects in T cell tolerance to self-antigens. Interactions of developing T cells with medullary thymic epithelial cells, which express tissue-restricted Ags, are essential for the establishment of central tolerance. However, vitamin D signaling in the thymus is poorly characterized.
View Article and Find Full Text PDFPathological neovascularization in age-related macular degeneration (nvAMD) drives the principal cause of blindness in the elderly. While there is a robust genetic association between genes of innate immunity and AMD, genome-to-phenome relationships are low, suggesting a critical contribution of environmental triggers of disease. Possible insight comes from the observation that a past history of infection with pathogens such as Chlamydia pneumoniae, or other systemic inflammation, can predispose to nvAMD in later life.
View Article and Find Full Text PDFElimination of self-reactive T cells in the thymus is critical to establish T-cell tolerance. A growing body of evidence suggests a role for thymic B cells in the elimination of self-reactive thymocytes. To specifically address the role of thymic B cells in central tolerance, we investigated the phenotype of thymic B cells in various mouse strains, including non-obese diabetic (NOD) mice, a model of autoimmune diabetes.
View Article and Find Full Text PDFAge-related macular degeneration is a prevalent neuroinflammatory condition and a major cause of blindness driven by genetic and environmental factors such as obesity. In diseases of aging, modifiable factors can be compounded over the life span. We report that diet-induced obesity earlier in life triggers persistent reprogramming of the innate immune system, lasting long after normalization of metabolic abnormalities.
View Article and Find Full Text PDFThere is a long-standing assumption that naive CD4 and CD8 T cells are largely homogeneous populations despite the extraordinary diversity of their T cell receptors (TCR). The self-immunopeptidome plays a key role in the selection of the naive T cell repertoire in the thymus, and self-peptides are also an important driver of differences between individual naive T cells with regard to their subsequent functional contributions to an immune response. Accumulating evidence suggests that as early as the β-selection stage of T cell development, when only one of the recombined chains of the mature TCR is expressed, signaling thresholds may be established for positive selection of immature thymocytes.
View Article and Find Full Text PDFNegative selection of developing T cells plays a significant role in T-cell tolerance to self-antigen. This process relies on thymic antigen-presenting cells which express both self-antigens and cosignaling molecules. Inducible T-cell costimulator (ICOS) belongs to the CD28 family of cosignaling molecules and binds to ICOS ligand (ICOSL).
View Article and Find Full Text PDFCD4 T cells have a remarkable potential to differentiate into diverse effector lineages following activation. Here, we probe the heterogeneity present among naive CD4 T cells before encountering their cognate antigen to ask whether their effector potential is modulated by pre-existing transcriptional and chromatin landscape differences. Single-cell RNA sequencing shows that key drivers of variability are genes involved in T cell receptor (TCR) signaling.
View Article and Find Full Text PDFT-cell dysfunction arising upon repeated antigen exposure prevents effective immunity and immunotherapy. Using various clinically and physiologically relevant systems, we show that a prominent feature of PD-1-expressing exhausted T cells is the development of cellular senescence features both and . This is associated with p16 expression and an impaired cell cycle G1 to S-phase transition in repeatedly stimulated T cells.
View Article and Find Full Text PDFCentral tolerance aims to limit the production of T lymphocytes bearing TCR with high affinity for self-peptide presented by MHC molecules. The accumulation of thymocytes with such receptors is limited by negative selection or by diversion into alternative differentiation, including T regulatory cell commitment. A role for the orphan nuclear receptor NR4A3 in negative selection has been suggested, but its function in this process has never been investigated.
View Article and Find Full Text PDFThe ability of T cells to identify foreign antigens and mount an efficient immune response while limiting activation upon recognition of self and self-associated peptides is critical. Multiple tolerance mechanisms work in concert to prevent the generation and activation of self-reactive T cells. T cell tolerance is tightly regulated, as defects in these processes can lead to devastating disease; a wide variety of autoimmune diseases and, more recently, adverse immune-related events associated with checkpoint blockade immunotherapy have been linked to a breakdown in T cell tolerance.
View Article and Find Full Text PDFT cells comprise a functionally heterogeneous cell population that has important roles in the immune system. While T cells are broadly considered to be a component of the antigen-specific adaptive immune response, certain T-cell subsets display innate-like effector characteristics whereas others perform immunosuppressive functions. These functionally diverse T-cell populations preferentially arise at different stages of ontogeny and are tailored to the immunological priorities of the organism over time.
View Article and Find Full Text PDFStudies in murine models show that subthreshold TCR interactions with self-peptide are required for thymic development and peripheral survival of naïve T cells. Recently, differences in the strength of tonic TCR interactions with self-peptide, as read-out by cell surface levels of CD5, were associated with distinct effector potentials among sorted populations of T cells in mice. However, whether CD5 can also be used to parse functional heterogeneity among human T cells is less clear.
View Article and Find Full Text PDFType 1 diabetes in non-obese diabetic (NOD) mice occurs when autoreactive T cells eliminate insulin producing pancreatic β cells. While extensively studied in T-cell receptor (TCR) transgenic mice, the contribution of alterations in thymic selection to the polyclonal T-cell pool in NOD mice is not yet resolved. The magnitude of signals downstream of TCR engagement with self-peptide directs the development of a functional T-cell pool, in part by ensuring tolerance to self.
View Article and Find Full Text PDFMedullary thymic epithelial cells (mTEC) contribute to the development of T cell tolerance by expressing and presenting tissue-restricted antigens (TRA), so that developing T cells can assess the self-reactivity of their antigen receptors prior to leaving the thymus. mTEC are a heterogeneous population of cells that differentially express TRA. Whether mTEC subsets induce distinct autoreactive T cell fates remains unclear.
View Article and Find Full Text PDFIt is becoming increasingly clear that unconventional T cell subsets, such as NKT, γδ T, mucosal-associated invariant T, and CD8αα T cells, each play distinct roles in the immune response. Subsets of these cell types can lack both CD4 and CD8 coreceptor expression. Beyond these known subsets, we identify CD4CD8TCRαβ, double-negative (DN) T cells, in mouse secondary lymphoid organs.
View Article and Find Full Text PDFThe presence of an immature tumor vascular network contributes to cancer dissemination and the development of resistance to therapies. Strategies to normalize the tumor vasculature are therefore of significant therapeutic interest for cancer treatments. VEGF inhibitors are used clinically to normalize tumor blood vessels.
View Article and Find Full Text PDFT cell development is a dynamic process accompanied by extensive thymocyte migration, cellular interactions, and T cell receptor (TCR) signaling. In particular, thymic selection processes that ensure a functional, self-tolerant repertoire require TCR interactions with self-peptide presented by major histocompatibility complex molecules expressed by specialized thymic antigen-presenting cells. The quantity and quality of these TCR signals influence T cell fate.
View Article and Find Full Text PDF