Publications by authors named "Heather McNairn"

Across Canada, farmers are encouraged to adopt beneficial management practices (BMPs) to protect soil heath, reduce green house gas emissions and mitigate off-site impacts from agriculture. Measuring the uptake of BMPs, including the implementation of conservation tillage, helps gauge the success of policies and programs to promote adoption. Satellites are one way to monitor BMP adoption and Synthetic Aperture Radars (SARs) are of particular interest given their all-weather data collection capability.

View Article and Find Full Text PDF

Irrigated rice requires intense water management under typical agronomic practices. Cost effective tools to improve the efficiency and assessment of water use is a key need for industry and resource managers to scale ecosystem services. In this research we advance model-based decomposition and machine learning to map inundated rice using time-series polarimetric, -band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) observations.

View Article and Find Full Text PDF

Efforts to use satellites to monitor the condition and productivity of crops, although extensive, can be challenging to operationalize at field scales in part due to low frequency revisit of higher resolution space-based sensors, in the context of an actively growing crop canopy. The presence of clouds and cloud shadows further impedes the exploitation of high resolution optical sensors for operational monitoring of crop development. The objective of this research was to present an option to facilitate greater temporal observing opportunities to monitor the accumulation of corn biomass, by integrating biomass products from Synthetic Aperture Radar (SAR) and optical satellite sensors.

View Article and Find Full Text PDF

Launched in January 2015, the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) observatory was designed to provide frequent global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using a radar and a radiometer operating at L-band frequencies. Despite a hardware mishap that rendered the radar inoperable shortly after launch, the radiometer continues to operate nominally, returning more than two years of science data that have helped to improve existing hydrological applications and foster new ones. Beginning in late 2016 the SMAP project launched a suite of new data products with the objective of recovering some high-resolution observation capability loss resulting from the radar malfunction.

View Article and Find Full Text PDF