Publications by authors named "Heather M Griffin"

Human Papillomaviruses have co-evolved with their human host, with each of the over 200 known HPV types infecting distinct epithelial niches to cause diverse disease pathologies. Despite the success of prophylactic vaccines in preventing high-risk HPV infection, the development of HPV anti-viral therapies has been hampered by the lack of enzymatic viral functions, and by difficulties in translating the results of in vitro experiments into clinically useful treatment regimes. In this review, we discuss recent advances in anti-HPV drug development, and highlight the importance of understanding persistent HPV infections for future anti-viral design.

View Article and Find Full Text PDF

Papillomaviruses exclusively infect stratified epithelial tissues and cause chronic infections. To achieve this, infected cells must remain in the epithelial basal layer alongside their uninfected neighbors for years or even decades. To examine how papillomaviruses achieve this, we used the MmuPV1 (Mus musculus papillomavirus 1) model of lesion formation and persistence.

View Article and Find Full Text PDF

Human papillomaviruses establish a reservoir of infection in the epithelial basal layer. To do this they limit their gene expression to avoid immune detection and modulate epithelial homeostasis pathways to inhibit the timing of basal cell delamination and differentiation to favour persistence. For low-risk Alpha papillomaviruses, which cause benign self-limiting disease in immunocompetent individuals, it appears that cell competition at the lesion edge restricts expansion.

View Article and Find Full Text PDF

The most highly expressed protein during the productive phase of the human papillomavirus (HPV) life cycle is E1^E4. Its full role during infection remains to be established. HPV E1^E4 is expressed during both the early and late stages of the virus life cycle and contributes to viral genome amplification.

View Article and Find Full Text PDF

To clarify E1^E4's role during high-risk HPV infection, the E4 proteins of HPV16 and 18 were compared side by side using an isogenic keratinocyte differentiation model. While no effect on cell proliferation or viral genome copy number was observed during the early phase of either virus life cycle, time-course experiments showed that viral genome amplification and L1 expression were differently affected upon differentiation, with HPV16 showing a much clearer E4 dependency. Although E4 loss never completely abolished genome amplification, its more obvious contribution in HPV16 focused our efforts on 16E4.

View Article and Find Full Text PDF

This study provides a first characterisation of β-HPV life-cycle events in tumours abscised from EV patients (the human model of β-HPV-induced skin cancer), and shows how changes in E4 expression patterns relate to disease severity. β-HPV life-cycle has also been reconstructed in organotypic raft cultures created using EV-derived keratinocytes. In EV lesions and raft cultures, abundant cytoplasmic E4 expression was detectable in differentiating cells along with viral genome amplification as reported for other HPV types.

View Article and Find Full Text PDF

The keratin IF network of epidermal keratinocytes provides a protective barrier against mechanical insult, it is also a major player in absorbing stress in these cells. The human papilloma virus (HPV) type 16 E1--E4 protein accumulates in the upper layers of HPV16-infected epithelium and is known to associate with and reorganise the keratin IF network in cells in culture. Here, we show that this function is conserved amongst a number of HPV alpha-group E1--E4 proteins and that the differentiation-dependent keratins are also targeted.

View Article and Find Full Text PDF

The abundant human papillomavirus (HPV) type 16 E4 protein exists as two distinct structural forms in differentiating epithelial cells. Monomeric full-length 16E1--E4 contains a limited tertiary fold constrained by the N and C termini. N-terminal deletions facilitate the assembly of E1--E4 into amyloid-like fibrils, which bind to thioflavin T.

View Article and Find Full Text PDF