Climate change is disrupting floral traits that mediate mutualistic and antagonistic species interactions. Plastic responses of these traits to multiple shifting conditions may be adaptive, depending on natural selection in new environments. We manipulated snowmelt date over three seasons (3-11 d earlier) in factorial combination with growing-season precipitation (normal, halved, or doubled) to measure plastic responses of volatile emissions and other floral traits in Ipomopsis aggregata.
View Article and Find Full Text PDFAbstractOrganismal traits often influence fitness via interactions with multiple species. That selection is not necessarily predictable from pairwise interactions, such as when interactions occur during different life cycle stages. Theoretically, directional selection during two sequential episodes (e.
View Article and Find Full Text PDFClimate change can cause changes in expression of organismal traits that influence fitness. In flowering plants, floral traits can respond to drought, and that phenotypic plasticity has the potential to affect pollination and plant reproductive success. Global climate change is leading to earlier snow melt in snow-dominated ecosystems as well as affecting precipitation during the growing season, but the effects of snow melt timing on floral morphology and rewards remain unknown.
View Article and Find Full Text PDFThe composition of plant-pollinator interactions-i.e., who interacts with whom in diverse communities-is highly dynamic, and we have a very limited understanding of how interaction identities change in response to perturbations in nature.
View Article and Find Full Text PDFPollinator foraging behavior has direct consequences for plant reproduction and has been implicated in driving floral trait evolution. Exploring the degree to which pollinators exhibit flexibility in foraging behavior will add to a mechanistic understanding of how pollinators can impose selection on plant traits. Although plants have evolved suites of floral traits to attract pollinators, flower color is a particularly important aspect of the floral display.
View Article and Find Full Text PDFMutualistic networks are key for the creation and maintenance of biodiversity, yet are threatened by global environmental change. Most simulation models assume that network structure remains static after species losses, despite theoretical and empirical reasons to expect dynamic responses. We assessed the effects of experimental single bumblebee species removals on the structure of entire flower visitation networks.
View Article and Find Full Text PDFMuch research debates whether properties of ecological networks such as nestedness and connectance stabilise biological communities while ignoring key behavioural aspects of organisms within these networks. Here, we computationally assess how adaptive foraging (AF) behaviour interacts with network architecture to determine the stability of plant-pollinator networks. We find that AF reverses negative effects of nestedness and positive effects of connectance on the stability of the networks by partitioning the niches among species within guilds.
View Article and Find Full Text PDFBackground And Aims: Most pollinators are generalists and therefore are likely to transfer heterospecific pollen among co-flowering plants. Most work on the impacts of heterospecific pollen deposition on plant fecundity has utilized hand-pollination experiments in greenhouse settings, and we continue to know very little about the reproductive effects of heterospecific pollen in field settings.
Methods: We explored how patterns of naturally deposited heterospecific pollen relate to the reproductive output of Delphinium barbeyi, a common subalpine perennial herb in the Rocky Mountains (USA).
The host ranges of plant pathogens and herbivores are phylogenetically constrained, so that closely related plant species are more likely to share pests and pathogens. Here we conducted a reanalysis of data from published experimental studies to test whether the severity of host-enemy interactions follows a similar phylogenetic signal. The impact of herbivores and pathogens on their host plants declined steadily with phylogenetic distance from the most severely affected focal hosts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2013
Understanding the functional impacts of pollinator species losses on plant populations is critical given ongoing pollinator declines. Simulation models of pollination networks suggest that plant communities will be resilient to losing many or even most of the pollinator species in an ecosystem. These predictions, however, have not been tested empirically and implicitly assume that pollination efficacy is unaffected by interactions with interspecific competitors.
View Article and Find Full Text PDF