Publications by authors named "Heather L Petrick"

Article Synopsis
  • Older adults (ages 73 on average) tried heat therapy by using an infrared sauna for 8 weeks to see if it helps their muscles stay strong and healthy.
  • The study found that this heat treatment increased the number of tiny blood vessels in their muscles, which is good, but it didn’t make their muscles grow bigger or stronger.
  • Overall, while the heat treatment helped the muscles' blood supply, it didn’t improve muscle strength or growth in the older adults.
View Article and Find Full Text PDF

Background: Plant-derived proteins are considered to have fewer anabolic properties when compared with animal-derived proteins. The anabolic properties of isolated proteins do not necessarily reflect the anabolic response to the ingestion of whole foods. The presence or absence of the various components that constitute the whole-food matrix can strongly impact protein digestion and amino acid absorption and, as such, modulate postprandial muscle protein synthesis rates.

View Article and Find Full Text PDF

Endothelium-dependent vasodilation can be tested using a variety of shear stress paradigms, some of which may involve the production of reactive oxygen species. The purpose of this study was to compare different methods for assessing endothelial function and their specific involvement of reactive oxygen species and influence of aerobic training status. Twenty-nine (10 F) young and healthy participants (VOmax: 34-74 mL·kg·min) consumed either an antioxidant cocktail (AOC; vitamin C, vitamin E, α-lipoic acid) or placebo (PLA) on each of two randomized visits.

View Article and Find Full Text PDF

Skeletal muscle disuse reduces muscle protein synthesis rates and induces atrophy, events associated with decreased mitochondrial respiration and increased reactive oxygen species. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation attenuates disuse-induced impairments in mitochondrial function and muscle protein synthesis rates. Female C57Bl/6N mice were subjected to single-limb casting (3 or 7 days) and consumed drinking water with or without 1 mM sodium nitrate.

View Article and Find Full Text PDF

Unlabelled: Impaired heart function can develop in individuals with diabetes in the absence of coronary artery disease or hypertension, suggesting mechanisms beyond hypertension/increased afterload contribute to diabetic cardiomyopathy. Identifying therapeutic approaches that improve glycemia and prevent cardiovascular disease are clearly required for clinical management of diabetes-related comorbidities. Since intestinal bacteria are important for metabolism of nitrate, we examined whether dietary nitrate and fecal microbial transplantation (FMT) from nitrate-fed mice could prevent high-fat diet (HFD)-induced cardiac abnormalities.

View Article and Find Full Text PDF

Within brown adipose tissue (BAT), the brain isoform of creatine kinase (CKB) has been proposed to regulate the regeneration of ADP and phosphocreatine in a futile creatine cycle (FCC) that stimulates energy expenditure. However, the presence of FCC, and the specific creatine kinase isoforms regulating this theoretical model within white adipose tissue (WAT), remains to be fully elucidated. In the present study, creatine did not stimulate respiration in cultured adipocytes, isolated mitochondria or mouse permeabilized WAT.

View Article and Find Full Text PDF

Rapid oscillations in cytosolic calcium (Ca) coordinate muscle contraction, relaxation, and physical movement. Intriguingly, dietary nitrate decreases ATP cost of contraction, increases force production, and increases cytosolic Ca, which would seemingly necessitate a greater demand for sarcoplasmic reticulum Ca ATPase (SERCA) to sequester Ca within the sarcoplasmic reticulum (SR) during relaxation. As SERCA is highly regulated, we aimed to determine the effect of 7-day nitrate supplementation (1 mM via drinking water) on SERCA enzymatic properties and the functional interaction between SERCA and mitochondrial oxidative phosphorylation.

View Article and Find Full Text PDF

Dietary nitrate supplementation, and the subsequent serial reduction to nitric oxide, has been shown to improve glucose homeostasis in several pre-clinical models of obesity and insulin resistance. While the mechanisms remain poorly defined, the beneficial effects of nitrate appear to be partially dependent on AMPK-mediated signaling events, a central regulator of metabolism and mitochondrial bioenergetics. Since AMPK can activate SIRT1, we aimed to determine if nitrate supplementation (4 mM sodium nitrate via drinking water) improved skeletal muscle mitochondrial bioenergetics and acetylation status in mice fed a high-fat diet (HFD: 60% fat).

View Article and Find Full Text PDF

We aimed to determine the combined effects of overexpressing plasma membrane fatty acid binding protein (FABPpm) and fatty acid translocase (CD36) on skeletal muscle fatty acid transport to establish if these transport proteins function collaboratively. Electrotransfection with either FABPpm or CD36 increased their protein content at the plasma membrane (+75% and +64%), increased fatty acid transport rates by +24% for FABPpm and +62% for CD36, resulting in a calculated transport efficiency of ∼0.019 and ∼0.

View Article and Find Full Text PDF

Obesity is associated with adipose tissue hypertrophy, systemic inflammation, mitochondrial dysfunction, and intestinal dysbiosis. Rodent models of high-fat diet (HFD)-feeding or genetic deletion of multifunctional proteins involved in immunity and metabolism are often used to probe the etiology of obesity; however, these models make it difficult to divorce the effects of obesity, diet composition, or immunity on endocrine regulation of blood glucose. We, therefore, investigated the importance of adipose inflammation, mitochondrial dysfunction, and gut dysbiosis for obesity-induced insulin resistance using a spontaneously obese mouse model.

View Article and Find Full Text PDF

The liver is particularly susceptible to the detrimental effects of a high-fat diet (HFD), rapidly developing lipid accumulation and impaired cellular homeostasis. Recently, dietary nitrate has been shown to attenuate HFD-induced whole body glucose intolerance and liver steatosis, however, the underlying mechanism(s) remain poorly defined. In the current study, we investigated the ability of dietary nitrate to minimize possible impairments in liver mitochondrial bioenergetics following 8 wk of HFD (60% fat) in male C57BL/6J mice.

View Article and Find Full Text PDF

Reductions in mitochondrial function have been proposed to cause insulin resistance, however the possibility that impairments in insulin signaling negatively affects mitochondrial bioenergetics has received little attention. Therefore, we tested the hypothesis that insulin could rapidly improve mitochondrial ADP sensitivity, a key process linked to oxidative phosphorylation and redox balance, and if this phenomenon would be lost following high-fat diet (HFD)-induced insulin resistance. Insulin acutely (60 min post I.

View Article and Find Full Text PDF

Acute elevations in inflammatory cytokines have been demonstrated to increase aortic and left ventricular stiffness and reduce endothelial function in healthy subjects. As vascular and cardiac functions are often transiently reduced following prolonged exercise, it is possible that cytokines released during exercise may contribute to these alterations. The a priori aims of this study were to determine whether vaccine-induced increases in inflammatory cytokines would reduce vascular and left ventricular function, whether vascular alterations would drive cardiac impairments, and whether this would be potentiated by moderate exercise.

View Article and Find Full Text PDF

Purpose: Sprint interval training (SIT) has gained popularity as a time-effective alternative to moderate-intensity endurance training (END). However, whether SIT is equally effective for decreasing cardiometabolic risk factors remains debatable, as many beneficial effects of exercise are thought to be transient, and unlike END, SIT is not recommended daily. Therefore, in line with current exercise recommendations, we examined the ability of SIT and END to improve cardiometabolic health in overweight/obese males.

View Article and Find Full Text PDF

Cardiac function has been shown to transiently decrease following prolonged exercise, with greater durations related to increased impairment. However, the prospective assessment of exercise duration on cardiac performance is rare, and the influence of relative exercise intensity is typically not assessed in relation to these changes. The aim of this study was to determine whether progressively longer running distances over the same course would elicit greater cardiac impairment.

View Article and Find Full Text PDF

Purpose: Ultraendurance exercise is steadily growing in popularity; however, the effect of increasingly prolonged durations of exercise on the vascular endothelium is unknown. The aim of this study was to characterize the effect of various ultramarathon running distances on vascular form and function.

Methods: We evaluated vascular endothelial function via flow-mediated dilation (FMD) in the superficial femoral artery, as well as microvascular function, inflammatory factors, and central artery stiffness, before and after participants completed 25-km (7M:2F), 50-km (11M:10F), 80-km (9M:4F), or 160-km (9M:2F) trail races all run on the same day and course.

View Article and Find Full Text PDF

Key Points: Ketone bodies are proposed to represent an alternative fuel source driving energy production, particularly during exercise. Biologically, the extent to which mitochondria utilize ketone bodies compared to other substrates remains unknown. We demonstrate in vitro that maximal mitochondrial respiration supported by ketone bodies is low when compared to carbohydrate-derived substrates in the left ventricle and red gastrocnemius muscle from rodents, and in human skeletal muscle.

View Article and Find Full Text PDF

White adipose tissue (WAT) dysfunction in obesity is implicated in the onset of whole body insulin resistance. Alterations in mitochondrial bioenergetics, namely impaired mitochondrial respiration and increased mitochondrial reactive oxygen species (mtROS) production, have been suggested to contribute to this metabolic dysregulation. However, techniques investigating mitochondrial function are classically normalized to tissue weight, which may be confounding when considering obesity-related adipocyte hypertrophy.

View Article and Find Full Text PDF

Type 1 and type 2 diabetes are both tightly associated with impaired glucose control. Although both pathologies stem from different mechanisms, a reduction in insulin action coincides with drastic metabolic dysfunction in skeletal muscle and metabolic inflexibility. However, the underlying explanation for this response remains poorly understood, particularly since it is difficult to distinguish the role of attenuated insulin action from the detrimental effects of reactive lipid accumulation, which impairs mitochondrial function and promotes reactive oxygen species (ROS) emission.

View Article and Find Full Text PDF

Key Points: Dietary nitrate is a prominent therapeutic strategy to mitigate some metabolic deleterious effects related to obesity. Mitochondrial dysfunction is causally linked to adipose tissue inflammation and insulin resistance. Whole-body glucose tolerance is prevented by nitrate independent of body weight and energy expenditure.

View Article and Find Full Text PDF

Dietary nitrate has been shown to increase cytosolic calcium concentrations within the heart, which would necessitate greater calcium sequestration for relaxation. In the present study we demonstrate that while nitrate supplementation reduced blood pressure, calcium-handling protein content, sarco(endo)plasmic reticulum Ca-ATPase 2a (SERCA) enzymatic properties, and left ventricular function were not altered. In addition, nitrite did not alter in vitro SERCA activity.

View Article and Find Full Text PDF

The application of blood flow restriction (BFR) during resistance exercise is increasingly recognized for its ability to improve rehabilitation and for its effectiveness in increasing muscle hypertrophy and strength among healthy populations. However, direct comparison of the skeletal muscle adaptations to low-load resistance exercise (LL-RE) and low-load BFR resistance exercise (LL-BFR) performed to task failure is lacking. Using a within-subject design, we examined whole muscle group and skeletal muscle adaptations to 6 wk of LL-RE and LL-BFR training to repetition failure.

View Article and Find Full Text PDF