Publications by authors named "Heather L Francis"

Objective: Conflicting microbiota data exist for primary sclerosing cholangitis (PSC) and experimental models.

Goal: define the function of complex resident microbes and their association relevant to PSC patients by studying germ-free (GF) and antibiotic-treated specific pathogen-free (SPF) multidrug-resistant 2 deficient ( ) mice and microbial profiles in PSC patient cohorts.

Design: We measured weights, liver enzymes, RNA expression, histological, immunohistochemical and fibrotic biochemical parameters, faecal 16S rRNA gene profiling and metabolomic endpoints in gnotobiotic and antibiotic-treated SPF mice and targeted metagenomic analysis in PSC patients.

View Article and Find Full Text PDF

Cholestasis is a condition that leads to chronic hepatobiliary inflammation, fibrosis, and eventually cirrhosis. Many microRNAs (miRs) are known to have a role in fibrosis progression; however, the role of miR-21 during cholestasis remains unknown. Therefore, the aim of this study was to elucidate the role of miR-21 during cholestasis-induced biliary hyperplasia and hepatic fibrosis.

View Article and Find Full Text PDF

Cholangiopathies are characterized by dysregulation of the balance between biliary growth and loss. We have shown that histamine (HA) stimulates biliary growth via autocrine mechanisms. To evaluate the paracrine effects of mast cell (MC) stabilization on biliary proliferation, sham or BDL rats were treated by IP-implanted osmotic pumps filled with saline or cromolyn sodium (24 mg/kg BW/day (inhibits MC histamine release)) for 1 week.

View Article and Find Full Text PDF

Histamine is formed by the conversion of l-histidine into histamine by histidine decarboxylase (HDC). We have previously shown that inhibition of HDC blocks cholangiocyte proliferation and silencing of HDC decreases vascular endothelial growth factor (VEGF) expression. We hypothesized that increased HDC expression during cholestatic liver injury is mediated by the down-regulation of the specific miRNA miR-125b, a post-transcriptional regulator.

View Article and Find Full Text PDF

Cholangiocytes, bile duct lining cells, actively adjust the amount of cholesterol and bile acids in bile through expression of enzymes and channels involved in transportation and metabolism of the cholesterol and bile acids. Herein, we report molecular mechanisms regulating bile acid biosynthesis in cholangiocytes. Among the cytochrome p450 (Cyp) enzymes involved in bile acid biosynthesis, sterol 27-hydroxylase (Cyp27) that is the rate-limiting enzyme for the acidic pathway of bile acid biosynthesis expressed in cholangiocytes.

View Article and Find Full Text PDF

Although large cholangiocytes exert their functions by activation of cyclic adenosine 3',5'-monophosphate (cAMP), Ca(2+)-dependent signaling regulates the function of small cholangiocytes. Histamine interacts with four receptors, H1-H4HRs. H1HR acts by Gαq activating IP(3)/Ca(2+), whereas H2HR activates Gα(s) stimulating cAMP.

View Article and Find Full Text PDF

Rat and human biliary epithelium is morphologically and functionally heterogeneous. As no information exists on the heterogeneity of the murine intrahepatic biliary epithelium, and with increased usage of transgenic mouse models to study liver disease pathogenesis, we sought to evaluate the morphological, secretory, and proliferative phenotypes of small and large bile ducts and purified cholangiocytes in normal and cholestatic mouse models. For morphometry, normal and bile duct ligation (BDL) mouse livers (C57/BL6) were dissected into blocks of 2-4 microm(2), embedded in paraffin, sectioned, and stained with hematoxylin and eosin.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the sensory neuropeptide alpha-CGRP in the regulation of cholangiocyte proliferation during cholestasis caused by bile duct obstruction.
  • Using a knockout mouse model lacking alpha-CGRP, researchers found that these mice had reduced cholangiocyte proliferation compared to wild-type mice after bile duct obstruction.
  • The findings suggest that sensory innervation and the presence of alpha-CGRP are crucial for stimulating cholangiocyte proliferation in response to liver stress.
View Article and Find Full Text PDF