Publications by authors named "Heather K Raymon"

Cluster of differentiation 47 (CD47) is a transmembrane protein ubiquitously expressed on human cells but overexpressed on many different tumor cells. The interaction of CD47 with signal-regulatory protein alpha (SIRPα) triggers a "don't eat me" signal to the macrophage, inhibiting phagocytosis. Thus, overexpression of CD47 enables tumor cells to escape from immune surveillance via the blockade of phagocytic mechanisms.

View Article and Find Full Text PDF

Purpose: DNA-dependent protein kinase catalytic subunit (DNA-PK) is a pleiotropic kinase involved in DNA repair and transcriptional regulation. DNA-PK is deregulated in selected cancer types and is strongly associated with poor outcome. The underlying mechanisms by which DNA-PK promotes aggressive tumor phenotypes are not well understood.

View Article and Find Full Text PDF

Historically, phenotypic-based drug discovery has yielded a high percentage of novel drugs while uncovering new tumor biology. CC-671 was discovered using a phenotypic screen for compounds that preferentially induced apoptosis in triple-negative breast cancer cell lines while sparing luminal breast cancer cell lines. Detailed kinase profiling shows CC-671 potently and selectively inhibits two kinases-TTK and CLK2.

View Article and Find Full Text PDF

CC-115, a selective dual inhibitor of the mammalian target of rapamycin (mTOR) kinase and DNA-dependent protein kinase (DNA-PK), is undergoing Phase 1 clinical studies. Here we report the characterization of DNA-PK inhibitory activity of CC-115 in cancer cell lines. CC-115 inhibits auto-phosphorylation of the catalytic subunit of DNA-PK (DNA-PKcs) at the S2056 site (pDNA-PK S2056), leading to blockade of DNA-PK-mediated non-homologous end joining (NHEJ).

View Article and Find Full Text PDF

Pomalidomide is an IMiD(®) immunomodulatory agent, which has shown clinically significant benefits in relapsed and/or refractory multiple myeloma (rrMM) patients when combined with dexamethasone, regardless of refractory status to lenalidomide or bortezomib. (Schey et al, ; San Miguel et al, 2013; Richardson et al, 2014; Scott, ) In this work, we present preclinical data showing that the combination of pomalidomide with dexamethasone (PomDex) demonstrates potent anti-proliferative and pro-apoptotic activity in both lenalidomide-sensitive and lenalidomide-resistant MM cell lines. PomDex also synergistically inhibited tumour growth compared with single-agent treatment in xenografts of lenalidomide-resistant H929 R10-1 cells.

View Article and Find Full Text PDF

We report here the synthesis and structure-activity relationship (SAR) of a novel series of triazole containing mammalian target of rapamycin (mTOR) kinase inhibitors. SAR studies examining the potency, selectivity, and PK parameters for a series of triazole containing 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones resulted in the identification of triazole containing mTOR kinase inhibitors with improved PK properties. Potent compounds from this series were found to block both mTORC1(pS6) and mTORC2(pAktS473) signaling in PC-3 cancer cells, in vitro and in vivo.

View Article and Find Full Text PDF

We report here the synthesis and structure-activity relationship (SAR) of a novel series of mammalian target of rapamycin (mTOR) kinase inhibitors. A series of 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones were optimized for in vivo efficacy. These efforts resulted in the identification of compounds with excellent mTOR kinase inhibitory potency, with exquisite kinase selectivity over the related lipid kinase PI3K.

View Article and Find Full Text PDF

mTOR is a serine/threonine kinase that regulates cell growth, metabolism, proliferation, and survival. mTOR complex-1 (mTORC1) and mTOR complex-2 (mTORC2) are critical mediators of the PI3K-AKT pathway, which is frequently mutated in many cancers, leading to hyperactivation of mTOR signaling. Although rapamycin analogues, allosteric inhibitors that target only the mTORC1 complex, have shown some clinical activity, it is hypothesized that mTOR kinase inhibitors, blocking both mTORC1 and mTORC2 signaling, will have expanded therapeutic potential.

View Article and Find Full Text PDF
Article Synopsis
  • Sotatercept (ACE-011) is a recombinant protein that inhibits activin and TGF-β superfamily members, showing promise in increasing red blood cell (RBC) count and hemoglobin in clinical trials.
  • In animal studies, RAP-011 (the mouse version of ACE-011) leads to rapid increases in hematocrit and RBC production, linked to stimulation of bone marrow precursors and increased erythropoietin levels.
  • Research indicates that RAP-011 may counteract the inhibitory effects of certain TGF-β ligands on late-stage red blood cell development, providing insights for developing sotatercept as a treatment for anemia.
View Article and Find Full Text PDF

Purpose: mTOR pathway hyperactivation occurs in approximately 90% of glioblastomas, but the allosteric mTOR inhibitor rapamycin has failed in the clinic. Here, we examine the efficacy of the newly discovered ATP-competitive mTOR kinase inhibitors CC214-1 and CC214-2 in glioblastoma, identifying molecular determinants of response and mechanisms of resistance, and develop a pharmacologic strategy to overcome it.

Experimental Design: We conducted in vitro and in vivo studies in glioblastoma cell lines and an intracranial model to: determine the potential efficacy of the recently reported mTOR kinase inhibitors CC214-1 (in vitro use) and CC214-2 (in vivo use) at inhibiting rapamycin-resistant signaling and blocking glioblastoma growth and a novel single-cell technology-DNA Encoded Antibody Libraries-was used to identify mechanisms of resistance.

View Article and Find Full Text PDF

A series of 1,1-diarylalkene derivatives were prepared to optimize the properties of CC-5079 (1), a dual inhibitor of tubulin polymerization and phosphodiesterase 4 (PDE4). By using the 3-ethoxy-4-methoxyphenyl PDE4 pharmacophore as one of the aromatic rings, a significant improvement in PDE4 inhibition was achieved. Compound 28 was identified as a dual inhibitor with potent PDE4 (IC(50)=54 nM) and antitubulin activity (HCT-116 IC(50)=34 nM and tubulin polymerization IC(50) ∼1 μM).

View Article and Find Full Text PDF

We have found that the synthetic compound CC-5079 potently inhibits cancer cell growth in vitro and in vivo by a novel combination of molecular mechanisms. CC-5079 inhibits proliferation of cancer cell lines from various organs and tissues at nanomolar concentrations. Its IC(50) value ranges from 4.

View Article and Find Full Text PDF

Despite the availability of a great number of medications, the asthma epidemic is continuing to increase. It is obvious that a high, unmet medical need remains and innovative therapeutic agents are urgently required. Existing therapies, such as beta-agonists and corticosteroids, provide relief for sufferers of mild-to-moderate asthma, reversing the acute bronchoconstriction and decreasing the inflammation.

View Article and Find Full Text PDF

The respiratory diseases asthma and chronic obstructive pulmonary disease (COPD) exhibit common, key pathological features, including the development of airflow limitations such as thickening of the airway wall, and the presence of an inflammatory process. However, that is where their similarities end. A large number of medications for asthma are available to decrease inflammation and prevent or reverse airway constriction, while very few therapeutics, if any, exist for the effective management of COPD.

View Article and Find Full Text PDF

Mutations in alpha-synuclein have been linked to rare, autosomal dominant forms of Parkinson's disease. Despite its ubiquitous expression, mutant alpha-synuclein primarily leads to the loss of dopamine-producing neurons in the substantia nigra. alpha-Synuclein is a presynaptic nerve terminal protein of unknown function, although several studies suggest it is important for synaptic plasticity and maintenance.

View Article and Find Full Text PDF