In rodents, oxytocin (Oxt) contributes to the onset of maternal care by shifting the perception of pups from aversive to attractive. Both Oxt receptor knockout (Oxtr -/-) and forebrain-specific Oxtr knockout (FB/FB) dams abandon their first litters, likely due to a failure of the brain to 'switch' to a more maternal state. Whether this behavioral shift is neurochemically similar in virgin females, who can display maternal behaviors when repeatedly exposed to pups, or what neuroanatomical substrate is critical for the onset of maternal care remains unknown.
View Article and Find Full Text PDFAntibodies are one of the most utilized tools in biomedical research. However, few of them are rigorously evaluated, as there are no accepted guidelines or standardized methods for determining their validity before commercialization. Often, an antibody is considered validated if it detects a band by Western blot of the expected molecular weight and, in some cases, if blocking peptides result in loss of staining.
View Article and Find Full Text PDFSkeletal muscle thermogenesis provides a potential avenue for better understanding metabolic homeostasis and the mechanisms underlying energy expenditure. Surprisingly little evidence is available to link the neural, myocellular, and molecular mechanisms of thermogenesis directly to measurable changes in muscle temperature. This paper describes a method in which temperature transponders are utilized to retrieve direct measurements of mouse and rat skeletal muscle temperature.
View Article and Find Full Text PDFIt is well established that the damaging effects of drugs of abuse, such as cocaine, can extend beyond the user to their offspring. While most preclinical models of the generational effects of cocaine abuse have focused on maternal effects, we, and others, report distinct effects on offspring sired by fathers treated with cocaine prior to breeding. However, little is known about the effects of paternal cocaine use on first generation (F1) offspring's social behaviors.
View Article and Find Full Text PDFThe oxytocin (Oxt) system is a known neuromodulator of social behaviors, but also appears to contribute to the development of sex-specific neural circuitry. In this latter role, the Oxt system helps to lay the foundation for sex-specific behaviors across the life span. In mice, the Oxt system emerges in early development, with sex differences in the expression of Oxt and a temporal offset in the expression of the Oxt receptor (Oxtr) relative to Oxt.
View Article and Find Full Text PDFIntroduction: The oxytocin (Oxt) system, while typically associated with the neural regulation of social behaviors, also plays a role in an individual's vulnerability to develop alcohol use disorders (AUD). In humans, changes to the Oxt system, due to early life experience and/or genetic mutations, are associated with increased vulnerability to AUD. While a considerable amount is known about Oxt's role in AUD in males, less is known or understood, about how Oxt may affect AUD in females, likely due to many clinical and preclinical studies of AUD not directly considering sex as a biological variable.
View Article and Find Full Text PDFChronic pain results in a variety of neural adaptations, many of which are maladaptive and result in hypersensitivity to pain. In humans, this hypersensitivity can be debilitating and treatment options are limited. Fortunately, there are numerous animal models that mimic clinical populations and have the potential to aid in the evaluation of underlying mechanisms and ultimately the development of better treatments.
View Article and Find Full Text PDFIntroduction: Richardson's ground squirrels use alarm calls to warn conspecifics about potential predatory threats. Chirp calls typically indicate high levels of threat from airborne predators, while whistle calls are associated with lower levels of threat from terrestrial predators. These types of calls primarily elicit escape behaviors and increased vigilance in receivers, respectively.
View Article and Find Full Text PDFJ Neuroendocrinol
February 2020
Arginine vasopressin (AVP) is a neuropeptide which acts centrally to modulate numerous social behaviors. One receptor subtype through which these effects occur is the AVP 1a receptor (AVPR1A). The modulatory effects of Avp via the AVPR1A varies by species as well as sex, since both AVP and the AVPR1A tend to be expressed more prominently in males.
View Article and Find Full Text PDFOxytocin (OT) and vasopressin (VP) are known modulators of social behaviour across rodents. Research has revealed the location of action of these nonapeptides through localization of their associated receptors, which include the oxytocin receptor (OTR) and the vasopressin 1a receptor (V1aR). As research into these complex systems has progressed, studies investigating how these systems modulate behaviour have remained relatively narrow in scope (ie, focused on how a single brain region shapes behaviour in only a handful of species).
View Article and Find Full Text PDFOxytocin and vasopressin are well-conserved peptides important to the regulation of numerous aspects of social behavior, including sociality. Research exploring the distribution of the receptors for oxytocin (Oxtr) and for vasopressin (Avpr1a) in mammals has revealed associations between receptor distribution, sociality, and species' mating systems. Given that sociality and gregariousness can be tightly linked to reproduction, these nonapeptides unsurprisingly support affiliative behaviors that are important for mating and offspring care.
View Article and Find Full Text PDFIn nearly every vertebrate species examined thus far arginine vasopressin (AVP) and its homologues modulate behavior; thus, providing rich systems for comparative research. In rodents, AVP is best known for its modulation of social behavior; however, to date, research on AVPs effects on behavior have been limited to laboratory models and a few experiments using large outdoor enclosures. To extend our understanding of AVPs role in modulating social behavior and communication in an ecologically relevant context, we examined the effects of AVP on behavior of free-living Richardson's ground squirrels (Urocitellus richardsonii).
View Article and Find Full Text PDFThe arginine vasopressin 1b receptor (Avpr1b) is involved in the modulation of a variety of behaviors and is an important part of the mammalian hormonal stress axis. The Avpr1b is prominent in hippocampal CA2 pyramidal cells and in the anterior pituitary corticotrophs. Decades of research on this receptor has demonstrated its importance to the modulation of social recognition memory, social forms of aggression, and modulation of the hypothalamic-pituitary-adrenal axis, particularly under conditions of acute stress.
View Article and Find Full Text PDFFor many, the terms oxytocin and vasopressin immediately evoke images of animals interacting with one another, as both of these neuropeptides have been implicated as being part of the neurochemical "glue" that socially binds animals. However, social environments and social interactions are complex and include behaviors that bring animals together as well as behaviors that keep animals apart. It is at the intersection of social context, social experience, and an individual's sex that oxytocin and vasopressin act to modulate social behavior and social cognition.
View Article and Find Full Text PDFBackground: The neuropeptide arginine vasopressin (Avp) modulates social behaviors via its two centrally expressed receptors, the Avp 1a receptor and the Avp 1b receptor (Avpr1b). Recent work suggests that, at least in mice, Avp signaling through Avpr1b within the CA2 region of the hippocampus is critical for normal aggressive behaviors and social recognition memory. However, this brain area is just one part of a larger neural circuit that is likely to be impacted in Avpr1b knockout (-/-) mice.
View Article and Find Full Text PDFIt is well established that the nonapeptide oxytocin (Oxt) is important for the neural modulation of behaviors in many mammalian species. Since its discovery in 1906 and synthesis in the early 1950s, elegant pharmacological work has helped identify specific neural substrates on which Oxt exerts its effects. More recently, mice with targeted genetic disruptions of the Oxt system-i.
View Article and Find Full Text PDFCurr Top Behav Neurosci
July 2016
The motivation to engage in social behaviors is influenced by past experience and internal state, but also depends on the behavior of other animals. Across species, the oxytocin (Oxt) and vasopressin (Avp) systems have consistently been linked to the modulation of motivated social behaviors. However, how they interact with other systems, such as the mesolimbic dopamine system, remains understudied.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
June 2015
Schizophrenia is a chronic debilitating neuropsychiatric disorder estimated to affect 51 million people worldwide. Several symptom domains characterize schizophrenia, including negative symptoms, such as social withdrawal and anhedonia, cognitive impairments, such as disorganized thinking and impaired memory, and positive symptoms, such as hallucinations and delusions. While schizophrenia is a complex neuropsychiatric disorder with no single "cause," there is evidence that the oxytocin (Oxt) system may be dysregulated in some individuals.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
June 2015
Oxytocin (Oxt) is a neurohormone known for its physiological roles associated with lactation and parturition in mammals. Oxt can also profoundly influence mammalian social behaviors such as affiliative, parental, and aggressive behaviors. While the acute effects of Oxt signaling on adult behavior have been heavily researched in many species, including humans, the developmental effects of Oxt on the brain and behavior are just beginning to be explored.
View Article and Find Full Text PDFEur J Neurosci
November 2014
The function of the CA2 region of the hippocampus is poorly understood. Although the CA1 and CA3 regions have been extensively studied, for years the CA2 region has primarily been viewed as a linking area between the two. However, the CA2 region is known to have distinct neurochemical and structural features that are different from the other parts of the hippocampus and in recent years it has been suggested that the CA2 region may play a role in the formation and/or recall of olfactory-based memories needed for normal social behavior.
View Article and Find Full Text PDFOxytocin (Oxt) acting through its single receptor subtype, the Oxtr, is important for the coordination of physiology and behavior associated with parturition and maternal care. Knockout mouse models have been helpful in exploring the contributions of Oxt to maternal behavior, including total body Oxt knockout (Oxt -/-) mice, forebrain conditional Oxtr knockout (Oxtr FB/FB) mice, and total body Oxtr knockout (Oxtr -/-) mice. Since Oxtr -/- mice are unable to lactate, maternal behavior has only been examined in virgin females, or in dams within a few hours of parturition, and there have been no studies that have examined their anxiety-like and depression-like behavior following parturition.
View Article and Find Full Text PDFPrevious work implicating the neuropeptide oxytocin (Oxt) in the neural regulation of aggression in males has been limited. However, there are reports of heightened aggression in Oxt knockout and Oxt receptor (Oxtr) knockout male mice when they are born to null mutant mothers; suggesting that intrauterine exposure to Oxt may be important to normal aggression in adulthood. To explore this, we examined aggression in two lines of Oxtr mice, a total knockout (Oxtr-/-), in which the Oxtr gene is absent from the time of conception, and a predominantly forebrain specific knockout (Oxtr FB/FB), in which the Oxtr gene is not excised until approximately 21-28days postnatally.
View Article and Find Full Text PDFSociability consists of behaviors that bring animals together and those that keep animals apart. Remarkably, while the neural circuitry that regulates these two "faces" of sociability differ from one another, two neurohormones, oxytocin (Oxt) and vasopressin (Avp), have been consistently implicated in the regulation of both. In this chapter the the structure and function of the Oxt and Avp systems, the ways in which affiliative and aggressive behavior are studied and the roles of Oxt and Avp in the regulation of sociability will be briefly reviewed.
View Article and Find Full Text PDF